@@ -858,7 +858,6 @@ def lazyoptimize(
858858 abs_tol = None , # suggested 1e-4, for n_iter = 200
859859 min_budget = 50 , # minimum budget for early stopping
860860 func_args = None ,
861- method = "bayesian" , # "bayesian" or "mc
862861 estimators = "all" ,
863862 type_pi = "kde" , # for now, 'kde', 'bootstrap', 'splitconformal'
864863 type_exec = "independent" , # "queue" or "independent" (default)
@@ -884,9 +883,6 @@ def lazyoptimize(
884883 func_args: a list;
885884 additional parameters for the objective function (if necessary)
886885
887- method: an str;
888- "bayesian" (default) for Gaussian posteriors or "mc" for Monte Carlo posteriors
889-
890886 estimators: an str or a list of strs (estimators names)
891887 if "all", then 30 models are fitted. Otherwise, only those provided in the list
892888 are adjusted; for example ["RandomForestRegressor", "Ridge"]
@@ -978,6 +974,7 @@ def lazyoptimize(
978974 seed = self .seed ,
979975 n_jobs = self .n_jobs ,
980976 acquisition = self .acquisition ,
977+ method = self .method ,
981978 min_value = self .min_value ,
982979 surrogate_obj = copy .deepcopy (self .regressors [0 ][1 ]),
983980 )
@@ -987,7 +984,6 @@ def lazyoptimize(
987984 abs_tol = abs_tol , # suggested 1e-4, for n_iter = 200
988985 min_budget = min_budget , # minimum budget for early stopping
989986 func_args = func_args ,
990- method = method ,
991987 )
992988
993989 score_next_param = gp_opt_obj_prev .y_min
@@ -1014,6 +1010,7 @@ def lazyoptimize(
10141010 seed = self .seed ,
10151011 n_jobs = self .n_jobs ,
10161012 acquisition = self .acquisition ,
1013+ method = self .method ,
10171014 min_value = self .min_value ,
10181015 surrogate_obj = copy .deepcopy (self .regressors [i ][1 ]),
10191016 x_init = np .asarray (gp_opt_obj_prev .parameters ),
@@ -1099,6 +1096,7 @@ def lazyoptimize(
10991096 seed = self .seed ,
11001097 n_jobs = self .n_jobs ,
11011098 acquisition = self .acquisition ,
1099+ method = self .method ,
11021100 min_value = self .min_value ,
11031101 surrogate_obj = copy .deepcopy (self .regressors [i ][1 ]),
11041102 )
@@ -1148,6 +1146,7 @@ def foo(i):
11481146 seed = self .seed ,
11491147 n_jobs = self .n_jobs ,
11501148 acquisition = self .acquisition ,
1149+ method = self .method ,
11511150 min_value = self .min_value ,
11521151 surrogate_obj = copy .deepcopy (self .regressors [i ][1 ]),
11531152 )
0 commit comments