Skip to content

Commit 0ad4111

Browse files
remove jaxlib
1 parent aa59d98 commit 0ad4111

File tree

5 files changed

+16
-9
lines changed

5 files changed

+16
-9
lines changed

examples/elasticnet2regressor.py

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,7 @@
2424
print("Elapsed: ", time()-start)
2525

2626
print(f"RMSE for {datasets_names[i]} : {root_mean_squared_error(preds, y_test)}")
27+
print("regr.beta_", regr.beta_)
2728

2829
regr = ns.ElasticNet2Regressor(solver="cd", type_loss='quantile')
2930

@@ -33,6 +34,7 @@
3334
print("Elapsed: ", time()-start)
3435

3536
print(f"RMSE for {datasets_names[i]} : {root_mean_squared_error(preds, y_test)}")
37+
print("regr.beta_", regr.beta_)
3638

3739
# Example 1: Adam optimizer (Optax)
3840
regr = ns.ElasticNet2Regressor(
@@ -47,6 +49,7 @@
4749
preds = regr.predict(X_test)
4850
print(f"Adam - RMSE for {datasets_names[i]}: {root_mean_squared_error(preds, y_test)}")
4951
print(f"Elapsed: {time() - start:.2f}s\n")
52+
print("regr.beta_", regr.beta_)
5053

5154
# Example 2: SGD with momentum (Optax)
5255
regr = ns.ElasticNet2Regressor(
@@ -60,5 +63,6 @@
6063
regr.fit(X_train, y_train)
6164
preds = regr.predict(X_test)
6265
print(f"SGD (Quantile) - RMSE for {datasets_names[i]}: {root_mean_squared_error(preds, y_test)}")
63-
print(f"Elapsed: {time() - start:.2f}s\n")
66+
print(f"Elapsed: {time() - start:.2f}s\n")
67+
print("regr.beta_", regr.beta_)
6468

nnetsauce/base/base.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -283,7 +283,7 @@ def encode_clusters(self, X=None, predict=False, scaler=None, **kwargs): #
283283
**kwargs
284284
)
285285

286-
if self.cluster_encode == True:
286+
if self.cluster_encode:
287287
return mo.one_hot_encode(X_clustered, self.n_clusters).astype(
288288
np.float16
289289
)
@@ -663,7 +663,7 @@ def cook_test_set(self, X, **kwargs):
663663
else self.nn_scaler_.transform(X[:, self.index_col_])
664664
)
665665
Phi_X = self.create_layer(scaled_X, self.W_)
666-
if self.direct_link == True:
666+
if self.direct_link:
667667
return self.scaler_.transform(
668668
mo.cbind(scaled_X, Phi_X, backend=self.backend)
669669
)
@@ -687,7 +687,7 @@ def cook_test_set(self, X, **kwargs):
687687
if self.n_hidden_features > 0: # if hidden layer
688688
scaled_X = self.nn_scaler_.transform(augmented_X)
689689
Phi_X = self.create_layer(scaled_X, self.W_)
690-
if self.direct_link == True:
690+
if self.direct_link:
691691
return self.scaler_.transform(
692692
mo.cbind(augmented_X, Phi_X, backend=self.backend)
693693
)

nnetsauce/utils/matrixops.py

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -81,9 +81,13 @@ def cbind(x, y, backend="cpu"):
8181

8282

8383
# center... response
84-
def center_response(y):
85-
y_mean = np.mean(y)
86-
return y_mean, (y - y_mean)
84+
def center_response(y, method="mean"):
85+
if method == "mean":
86+
y_mean = np.mean(y)
87+
return y_mean, (y - y_mean)
88+
elif method == "median":
89+
y_median = np.median(y)
90+
return y_median, (y - y_median)
8791

8892

8993
# cluster the covariates

requirements.txt

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,4 @@
11
jax
2-
jaxlib
32
joblib
43
matplotlib
54
numpy

setup.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
from codecs import open
44
from os import path
55

6-
__version__ = '0.38.0'
6+
__version__ = '0.38.1'
77

88
# get the dependencies and installs
99
here = path.abspath(path.dirname(__file__))

0 commit comments

Comments
 (0)