|
| 1 | + |
| 2 | +# This is the hyperparameter configuration file for Multi-Band MelGAN with PWGAN discriminator. |
| 3 | +# This one is adjusted for finetuning, used to finetune the LJSpeech pretrained Multi-Band MelGAN generator on a 50-minute male speaker dataset |
| 4 | +# You may have to tune this for your own |
| 5 | + |
| 6 | +# Main differences from regular training config are: |
| 7 | +# 1. We start training the discriminator from the start |
| 8 | +# 2. The learning rate is very low |
| 9 | +# 3. Max iterations, save intervals, and associates are lowered because this gets done very quickly |
| 10 | + |
| 11 | +########################################################### |
| 12 | +# FEATURE EXTRACTION SETTING # |
| 13 | +########################################################### |
| 14 | +sampling_rate: 22050 |
| 15 | +hop_size: 256 # Hop size. |
| 16 | +format: "npy" |
| 17 | + |
| 18 | + |
| 19 | +########################################################### |
| 20 | +# GENERATOR NETWORK ARCHITECTURE SETTING # |
| 21 | +########################################################### |
| 22 | +model_type: "multiband_melgan_generator" |
| 23 | + |
| 24 | +multiband_melgan_generator_params: |
| 25 | + out_channels: 4 # Number of output channels (number of subbands). |
| 26 | + kernel_size: 7 # Kernel size of initial and final conv layers. |
| 27 | + filters: 384 # Initial number of channels for conv layers. |
| 28 | + upsample_scales: [8, 4, 2] # List of Upsampling scales. |
| 29 | + stack_kernel_size: 3 # Kernel size of dilated conv layers in residual stack. |
| 30 | + stacks: 4 # Number of stacks in a single residual stack module. |
| 31 | + is_weight_norm: false # Use weight-norm or not. |
| 32 | + |
| 33 | +########################################################### |
| 34 | +# DISCRIMINATOR NETWORK ARCHITECTURE SETTING # |
| 35 | +########################################################### |
| 36 | +parallel_wavegan_discriminator_params: |
| 37 | + out_channels: 1 # Number of output channels. |
| 38 | + kernel_size: 3 # Number of output channels. |
| 39 | + n_layers: 10 # Number of conv layers. |
| 40 | + conv_channels: 64 # Number of chnn layers. |
| 41 | + use_bias: true # Whether to use bias parameter in conv. |
| 42 | + nonlinear_activation: "LeakyReLU" # Nonlinear function after each conv. |
| 43 | + nonlinear_activation_params: # Nonlinear function parameters |
| 44 | + alpha: 0.2 # Alpha in LeakyReLU. |
| 45 | + |
| 46 | +########################################################### |
| 47 | +# STFT LOSS SETTING # |
| 48 | +########################################################### |
| 49 | +stft_loss_params: |
| 50 | + fft_lengths: [1024, 2048, 512] # List of FFT size for STFT-based loss. |
| 51 | + frame_steps: [120, 240, 50] # List of hop size for STFT-based loss |
| 52 | + frame_lengths: [600, 1200, 240] # List of window length for STFT-based loss. |
| 53 | + |
| 54 | +subband_stft_loss_params: |
| 55 | + fft_lengths: [384, 683, 171] # List of FFT size for STFT-based loss. |
| 56 | + frame_steps: [30, 60, 10] # List of hop size for STFT-based loss |
| 57 | + frame_lengths: [150, 300, 60] # List of window length for STFT-based loss. |
| 58 | + |
| 59 | +########################################################### |
| 60 | +# ADVERSARIAL LOSS SETTING # |
| 61 | +########################################################### |
| 62 | +lambda_feat_match: 10.0 # Loss balancing coefficient for feature matching loss |
| 63 | +lambda_adv: 2.5 # Loss balancing coefficient for adversarial loss. |
| 64 | + |
| 65 | +########################################################### |
| 66 | +# DATA LOADER SETTING # |
| 67 | +########################################################### |
| 68 | +batch_size: 64 # Batch size. |
| 69 | +batch_max_steps: 8192 # Length of each audio in batch for training. Make sure dividable by hop_size. |
| 70 | +batch_max_steps_valid: 81920 # Length of each audio for validation. Make sure dividable by hope_size. |
| 71 | +remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps. |
| 72 | +allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory. |
| 73 | +is_shuffle: true # shuffle dataset after each epoch. |
| 74 | + |
| 75 | +########################################################### |
| 76 | +# OPTIMIZER & SCHEDULER SETTING # |
| 77 | +########################################################### |
| 78 | +generator_optimizer_params: |
| 79 | + lr_fn: "PiecewiseConstantDecay" |
| 80 | + lr_params: |
| 81 | + boundaries: [1000, 5000, 10000, 20000] |
| 82 | + values: [0.00000000001, 0.000000000005, 0.000000000002, 0.0000000000005, 0.0000000000002] |
| 83 | + amsgrad: false |
| 84 | + |
| 85 | + |
| 86 | +discriminator_optimizer_params: |
| 87 | + lr_fn: "ExponentialDecay" |
| 88 | + lr_params: |
| 89 | + initial_learning_rate: 0.0000000005 |
| 90 | + decay_steps: 70000 |
| 91 | + decay_rate: 0.5 |
| 92 | + |
| 93 | +########################################################### |
| 94 | +# INTERVAL SETTING # |
| 95 | +########################################################### |
| 96 | +discriminator_train_start_steps: 0 # steps begin training discriminator |
| 97 | +train_max_steps: 10000 # Number of training steps. |
| 98 | +save_interval_steps: 1500 # Interval steps to save checkpoint. |
| 99 | +eval_interval_steps: 500 # Interval steps to evaluate the network. |
| 100 | +log_interval_steps: 100 # Interval steps to record the training log. |
| 101 | + |
| 102 | +########################################################### |
| 103 | +# OTHER SETTING # |
| 104 | +########################################################### |
| 105 | +num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results. |
0 commit comments