|
| 1 | + |
| 2 | +# This is the hyperparameter configuration file for ParallelWavegan. |
| 3 | +# Please make sure this is adjusted for the LJSpeech dataset. If you want to |
| 4 | +# apply to the other dataset, you might need to carefully change some parameters. |
| 5 | +# This configuration performs 4000k iters. |
| 6 | + |
| 7 | +# Original: https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/parallel_wavegan.v1.yaml |
| 8 | + |
| 9 | +########################################################### |
| 10 | +# FEATURE EXTRACTION SETTING # |
| 11 | +########################################################### |
| 12 | +sampling_rate: 22050 |
| 13 | +hop_size: 256 # Hop size. |
| 14 | +format: "npy" |
| 15 | + |
| 16 | + |
| 17 | +########################################################### |
| 18 | +# GENERATOR NETWORK ARCHITECTURE SETTING # |
| 19 | +########################################################### |
| 20 | +model_type: "parallel_wavegan_generator" |
| 21 | + |
| 22 | +parallel_wavegan_generator_params: |
| 23 | + out_channels: 1 # Number of output channels. |
| 24 | + kernel_size: 3 # Kernel size of dilated convolution. |
| 25 | + n_layers: 30 # Number of residual block layers. |
| 26 | + stacks: 3 # Number of stacks i.e., dilation cycles. |
| 27 | + residual_channels: 64 # Number of channels in residual conv. |
| 28 | + gate_channels: 128 # Number of channels in gated conv. |
| 29 | + skip_channels: 64 # Number of channels in skip conv. |
| 30 | + aux_channels: 80 # Number of channels for auxiliary feature conv. |
| 31 | + # Must be the same as num_mels. |
| 32 | + aux_context_window: 2 # Context window size for auxiliary feature. |
| 33 | + # If set to 2, previous 2 and future 2 frames will be considered. |
| 34 | + dropout: 0.0 # Dropout rate. 0.0 means no dropout applied. |
| 35 | + upsample_params: # Upsampling network parameters. |
| 36 | + upsample_scales: [4, 4, 4, 4] # Upsampling scales. Prodcut of these must be the same as hop size. |
| 37 | + |
| 38 | +########################################################### |
| 39 | +# DISCRIMINATOR NETWORK ARCHITECTURE SETTING # |
| 40 | +########################################################### |
| 41 | +parallel_wavegan_discriminator_params: |
| 42 | + out_channels: 1 # Number of output channels. |
| 43 | + kernel_size: 3 # Number of output channels. |
| 44 | + n_layers: 10 # Number of conv layers. |
| 45 | + conv_channels: 64 # Number of chnn layers. |
| 46 | + use_bias: true # Whether to use bias parameter in conv. |
| 47 | + nonlinear_activation: "LeakyReLU" # Nonlinear function after each conv. |
| 48 | + nonlinear_activation_params: # Nonlinear function parameters |
| 49 | + alpha: 0.2 # Alpha in LeakyReLU. |
| 50 | + |
| 51 | +########################################################### |
| 52 | +# STFT LOSS SETTING # |
| 53 | +########################################################### |
| 54 | +stft_loss_params: |
| 55 | + fft_lengths: [1024, 2048, 512] # List of FFT size for STFT-based loss. |
| 56 | + frame_steps: [120, 240, 50] # List of hop size for STFT-based loss |
| 57 | + frame_lengths: [600, 1200, 240] # List of window length for STFT-based loss. |
| 58 | + |
| 59 | + |
| 60 | +########################################################### |
| 61 | +# ADVERSARIAL LOSS SETTING # |
| 62 | +########################################################### |
| 63 | +lambda_adv: 4.0 # Loss balancing coefficient. |
| 64 | + |
| 65 | +########################################################### |
| 66 | +# DATA LOADER SETTING # |
| 67 | +########################################################### |
| 68 | +batch_size: 8 # Batch size. |
| 69 | +batch_max_steps: 16384 # Length of each audio in batch for training. Make sure dividable by hop_size. |
| 70 | +batch_max_steps_valid: 81920 # Length of each audio for validation. Make sure dividable by hope_size. |
| 71 | +remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps. |
| 72 | +allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory. |
| 73 | +is_shuffle: true # shuffle dataset after each epoch. |
| 74 | + |
| 75 | +########################################################### |
| 76 | +# OPTIMIZER & SCHEDULER SETTING # |
| 77 | +########################################################### |
| 78 | +generator_optimizer_params: |
| 79 | + lr_fn: "PiecewiseConstantDecay" |
| 80 | + lr_params: |
| 81 | + boundaries: [100000] # = discriminator_train_start_steps. |
| 82 | + values: [0.0005, 0.0001] # learning rate each interval. |
| 83 | + |
| 84 | + |
| 85 | +discriminator_optimizer_params: |
| 86 | + lr_fn: "PiecewiseConstantDecay" |
| 87 | + lr_params: |
| 88 | + boundaries: [0] # after resume and start training discriminator, global steps is 100k, but local discriminator step is 0 |
| 89 | + values: [0.0001, 0.0001] # learning rate each interval. |
| 90 | + |
| 91 | + |
| 92 | +########################################################### |
| 93 | +# INTERVAL SETTING # |
| 94 | +########################################################### |
| 95 | +discriminator_train_start_steps: 0 # steps begin training discriminator |
| 96 | +train_max_steps: 4000000 # Number of training steps. |
| 97 | +save_interval_steps: 20000 # Interval steps to save checkpoint. |
| 98 | +eval_interval_steps: 5000 # Interval steps to evaluate the network. |
| 99 | +log_interval_steps: 200 # Interval steps to record the training log. |
| 100 | + |
| 101 | +########################################################### |
| 102 | +# OTHER SETTING # |
| 103 | +########################################################### |
| 104 | +num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results. |
0 commit comments