Skip to content

Commit d0ce1b3

Browse files
authored
Merge branch 'master' into zerodivisionfix
2 parents 59c9aa0 + 5eee804 commit d0ce1b3

File tree

9 files changed

+35
-15
lines changed

9 files changed

+35
-15
lines changed

examples/fastspeech/train_fastspeech.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -120,20 +120,22 @@ def generate_and_save_intermediate_result(self, batch):
120120

121121
mels_before, mels_after, *_ = outputs
122122
mel_gts = batch["mel_gts"]
123+
utt_ids = batch["utt_ids"]
123124

124125
# convert to tensor.
125126
# here we just take a sample at first replica.
126127
try:
127128
mels_before = mels_before.values[0].numpy()
128129
mels_after = mels_after.values[0].numpy()
129130
mel_gts = mel_gts.values[0].numpy()
131+
utt_ids = utt_ids.values[0].numpy()
130132
except Exception:
131133
mels_before = mels_before.numpy()
132134
mels_after = mels_after.numpy()
133135
mel_gts = mel_gts.numpy()
136+
utt_ids = utt_ids.numpy()
134137

135138
# check directory
136-
utt_ids = batch["utt_ids"].numpy()
137139
dirname = os.path.join(self.config["outdir"], f"predictions/{self.steps}steps")
138140
if not os.path.exists(dirname):
139141
os.makedirs(dirname)

examples/fastspeech2/train_fastspeech2.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -132,20 +132,22 @@ def generate_and_save_intermediate_result(self, batch):
132132

133133
mels_before, mels_after, *_ = outputs
134134
mel_gts = batch["mel_gts"]
135+
utt_ids = batch["utt_ids"]
135136

136137
# convert to tensor.
137138
# here we just take a sample at first replica.
138139
try:
139140
mels_before = mels_before.values[0].numpy()
140141
mels_after = mels_after.values[0].numpy()
141142
mel_gts = mel_gts.values[0].numpy()
143+
utt_ids = utt_ids.values[0].numpy()
142144
except Exception:
143145
mels_before = mels_before.numpy()
144146
mels_after = mels_after.numpy()
145147
mel_gts = mel_gts.numpy()
148+
utt_ids = utt_ids.numpy()
146149

147150
# check directory
148-
utt_ids = batch["utt_ids"].numpy()
149151
dirname = os.path.join(self.config["outdir"], f"predictions/{self.steps}steps")
150152
if not os.path.exists(dirname):
151153
os.makedirs(dirname)

examples/fastspeech2_libritts/train_fastspeech2.py

Lines changed: 12 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -142,17 +142,20 @@ def generate_and_save_intermediate_result(self, batch):
142142

143143
mels_before, mels_after, *_ = outputs
144144
mel_gts = batch["mel_gts"]
145+
utt_ids = batch["utt_ids"]
145146

146147
# convert to tensor.
147148
# here we just take a sample at first replica.
148149
try:
149150
mels_before = mels_before.values[0].numpy()
150151
mels_after = mels_after.values[0].numpy()
151152
mel_gts = mel_gts.values[0].numpy()
153+
utt_ids = utt_ids.values[0].numpy()
152154
except Exception:
153155
mels_before = mels_before.numpy()
154156
mels_after = mels_after.numpy()
155157
mel_gts = mel_gts.numpy()
158+
utt_ids = utt_ids.numpy()
156159

157160
# check directory
158161
if self.use_griffin:
@@ -167,22 +170,25 @@ def generate_and_save_intermediate_result(self, batch):
167170
for idx, (mel_gt, mel_before, mel_after) in enumerate(
168171
zip(mel_gts, mels_before, mels_after), 1
169172
):
170-
173+
174+
171175
if self.use_griffin:
176+
utt_id = utt_ids[idx]
172177
grif_before = self.griffin_lim_tf(tf.reshape(mel_before, [-1, 80])[tf.newaxis, :], n_iter=32)
173178
grif_after = self.griffin_lim_tf(tf.reshape(mel_after, [-1, 80])[tf.newaxis, :], n_iter=32)
174179
grif_gt = self.griffin_lim_tf(tf.reshape(mel_gt, [-1, 80])[tf.newaxis, :], n_iter=32)
175-
self.griffin_lim_tf.save_wav(grif_before, griff_dir_name, f"{idx}_before")
176-
self.griffin_lim_tf.save_wav(grif_after, griff_dir_name, f"{idx}_after")
177-
self.griffin_lim_tf.save_wav(grif_gt, griff_dir_name, f"{idx}_gt")
178-
180+
self.griffin_lim_tf.save_wav(grif_before, griff_dir_name, f"{utt_id}_before")
181+
self.griffin_lim_tf.save_wav(grif_after, griff_dir_name, f"{utt_id}_after")
182+
self.griffin_lim_tf.save_wav(grif_gt, griff_dir_name, f"{utt_id}_gt")
183+
184+
utt_id = utt_ids[idx]
179185
mel_gt = tf.reshape(mel_gt, (-1, 80)).numpy() # [length, 80]
180186
mel_before = tf.reshape(mel_before, (-1, 80)).numpy() # [length, 80]
181187
mel_after = tf.reshape(mel_after, (-1, 80)).numpy() # [length, 80]
182188

183189

184190
# plit figure and save it
185-
figname = os.path.join(dirname, f"{idx}.png")
191+
figname = os.path.join(dirname, f"{utt_id}.png")
186192
fig = plt.figure(figsize=(10, 8))
187193
ax1 = fig.add_subplot(311)
188194
ax2 = fig.add_subplot(312)

examples/melgan/train_melgan.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -189,18 +189,20 @@ def generate_and_save_intermediate_result(self, batch):
189189
# generate
190190
y_batch_ = self.one_step_predict(batch)
191191
y_batch = batch["audios"]
192+
utt_ids = batch["utt_ids"]
192193

193194
# convert to tensor.
194195
# here we just take a sample at first replica.
195196
try:
196197
y_batch_ = y_batch_.values[0].numpy()
197198
y_batch = y_batch.values[0].numpy()
199+
utt_ids = utt_ids.values[0].numpy()
198200
except Exception:
199201
y_batch_ = y_batch_.numpy()
200202
y_batch = y_batch.numpy()
203+
utt_ids = utt_ids.numpy()
201204

202205
# check directory
203-
utt_ids = batch["utt_ids"].numpy()
204206
dirname = os.path.join(self.config["outdir"], f"predictions/{self.steps}steps")
205207
if not os.path.exists(dirname):
206208
os.makedirs(dirname)

examples/multiband_melgan/train_multiband_melgan.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -203,20 +203,22 @@ def generate_and_save_intermediate_result(self, batch):
203203

204204
y_mb_batch_ = self.one_step_predict(batch) # [B, T // subbands, subbands]
205205
y_batch = batch["audios"]
206+
utt_ids = batch["utt_ids"]
206207

207208
# convert to tensor.
208209
# here we just take a sample at first replica.
209210
try:
210211
y_mb_batch_ = y_mb_batch_.values[0].numpy()
211212
y_batch = y_batch.values[0].numpy()
213+
utt_ids = utt_ids.values[0].numpy()
212214
except Exception:
213215
y_mb_batch_ = y_mb_batch_.numpy()
214216
y_batch = y_batch.numpy()
217+
utt_ids = utt_ids.numpy()
215218

216219
y_batch_ = self.pqmf.synthesis(y_mb_batch_).numpy() # [B, T, 1]
217220

218221
# check directory
219-
utt_ids = batch["utt_ids"].numpy()
220222
dirname = os.path.join(self.config["outdir"], f"predictions/{self.steps}steps")
221223
if not os.path.exists(dirname):
222224
os.makedirs(dirname)

examples/multiband_pwgan/train_multiband_pwgan.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -217,20 +217,22 @@ def generate_and_save_intermediate_result(self, batch):
217217

218218
y_mb_batch_ = self.one_step_predict(batch) # [B, T // subbands, subbands]
219219
y_batch = batch["audios"]
220+
utt_ids = batch["utt_ids"]
220221

221222
# convert to tensor.
222223
# here we just take a sample at first replica.
223224
try:
224225
y_mb_batch_ = y_mb_batch_.values[0].numpy()
225226
y_batch = y_batch.values[0].numpy()
227+
utt_ids = utt_ids.values[0].numpy()
226228
except Exception:
227229
y_mb_batch_ = y_mb_batch_.numpy()
228230
y_batch = y_batch.numpy()
231+
utt_ids = utt_ids.numpy()
229232

230233
y_batch_ = self.pqmf.synthesis(y_mb_batch_).numpy() # [B, T, 1]
231234

232235
# check directory
233-
utt_ids = batch["utt_ids"].numpy()
234236
dirname = os.path.join(self.config["outdir"], f"predictions/{self.steps}steps")
235237
if not os.path.exists(dirname):
236238
os.makedirs(dirname)

examples/parallel_wavegan/train_parallel_wavegan.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -189,18 +189,20 @@ def generate_and_save_intermediate_result(self, batch):
189189
# generate
190190
y_batch_ = self.one_step_predict(batch)
191191
y_batch = batch["audios"]
192+
utt_ids = batch["utt_ids"]
192193

193194
# convert to tensor.
194195
# here we just take a sample at first replica.
195196
try:
196197
y_batch_ = y_batch_.values[0].numpy()
197198
y_batch = y_batch.values[0].numpy()
199+
utt_ids = utt_ids.values[0].numpy()
198200
except Exception:
199201
y_batch_ = y_batch_.numpy()
200202
y_batch = y_batch.numpy()
203+
utt_ids = utt_ids.numpy()
201204

202205
# check directory
203-
utt_ids = batch["utt_ids"].numpy()
204206
dirname = os.path.join(self.config["outdir"], f"predictions/{self.steps}steps")
205207
if not os.path.exists(dirname):
206208
os.makedirs(dirname)

examples/tacotron2/train_tacotron2.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -197,6 +197,7 @@ def generate_and_save_intermediate_result(self, batch):
197197
alignment_historys,
198198
) = outputs
199199
mel_gts = batch["mel_gts"]
200+
utt_ids = batch["utt_ids"]
200201

201202
# convert to tensor.
202203
# here we just take a sample at first replica.
@@ -205,14 +206,15 @@ def generate_and_save_intermediate_result(self, batch):
205206
mels_after = mel_outputs.values[0].numpy()
206207
mel_gts = mel_gts.values[0].numpy()
207208
alignment_historys = alignment_historys.values[0].numpy()
209+
utt_ids = utt_ids.values[0].numpy()
208210
except Exception:
209211
mels_before = decoder_output.numpy()
210212
mels_after = mel_outputs.numpy()
211213
mel_gts = mel_gts.numpy()
212214
alignment_historys = alignment_historys.numpy()
215+
utt_ids = utt_ids.numpy()
213216

214217
# check directory
215-
utt_ids = batch["utt_ids"].numpy()
216218
dirname = os.path.join(self.config["outdir"], f"predictions/{self.steps}steps")
217219
if not os.path.exists(dirname):
218220
os.makedirs(dirname)

tensorflow_tts/trainers/base_trainer.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -647,11 +647,11 @@ def compile(self, model, optimizer):
647647

648648
def _train_vars(self):
649649
if self.config["var_train_expr"]:
650-
list_freeze_var = self.config["var_train_expr"].split("|")
650+
list_train_var = self.config["var_train_expr"].split("|")
651651
return [
652652
v
653653
for v in self._model.trainable_variables
654-
if self._check_string_exist(list_freeze_var, v.name)
654+
if self._check_string_exist(list_train_var, v.name)
655655
]
656656
return self._model.trainable_variables
657657

0 commit comments

Comments
 (0)