Skip to content

Commit 1eab1b6

Browse files
committed
Release version 20.00.00.00
0 parents  commit 1eab1b6

9 files changed

+9841
-0
lines changed

LICENSE-3RD-PARTY.pdf

80.8 KB
Binary file not shown.

LICENSE.pdf

85.4 KB
Binary file not shown.

README.md

Lines changed: 73 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,73 @@
1+
2+
# langchain-teradata
3+
# Teradata Package for LangChain
4+
`langchain-teradata` is a Teradata package for Langchain that provides users with access to Teradata's Vector Store capabilities.
5+
6+
For community support, please visit the [Teradata Community](https://support.teradata.com/community?id=community_forum&sys_id=14fe131e1bf7f304682ca8233a4bcb1d).
7+
8+
For Teradata customer support, please visit [Teradata Support](https://support.teradata.com/csm).
9+
10+
Copyright 2025, Teradata. All Rights Reserved.
11+
12+
## Table of Contents
13+
* [Documentation](#documentation)
14+
* [Release Notes](#release-notes)
15+
* [Installation and Requirements](#installation-and-requirements)
16+
* [Usage Examples](#usage-examples)
17+
* [License](#license)
18+
19+
## Documentation
20+
General product information, including installation instructions, is available in the [Teradata Documentation website](https://docs.teradata.com/search/documents?query=Python+package+for+Generative-AI&sort=last_update&virtual-field=title_only&content-lang=en-US).
21+
22+
## Release Notes
23+
### Version 20.00.00.00
24+
* `langchain-teradata 20.00.00.00` marks the first release of the package.
25+
* Compatible with August Lake drop (Tahoe-1.2.1) .
26+
* Added methods for managing and creating vector stores:
27+
28+
* `from_documents(name, documents, embedding=None, **kwargs)`: Creates a new vector store, either 'file-based' or 'content-based', depending on the type of input documents. If the input is PDF file(s) or file path(s), a file-based vector store is created. If the input is LangChain Document object(s), a content-based vector store is created. If the store already exists, raises an error.
29+
* `from_texts(name, texts, embedding=None, **kwargs)`: Creates a content-based vector store from raw text or a list of texts. Supports embedding models and chat completion models. If the store already exists, raises an error.
30+
* `from_datasets(name, data, embedding=None, **kwargs)`: Creates a content-based vector store from tables or DataFrames, specifying data columns and optional key columns, with embedding model support. If the store already exists, raises an error.
31+
* `from_embeddings(name, data, **kwargs)`: Creates an embedding-based vector store from pre-embedded tables or DataFrames, specifying the embedding columns. If the store already exists, raises an error.
32+
* `add_documents(documents, **kwargs)`: Adds documents (PDFs, directories, wildcards or Langchain Documents) to an existing vector store. Automatically creates the store if it does not exist.
33+
* `add_datasets(data, **kwargs)`: Adds tables or DataFrames to a content-based vector store. Creates the store if needed.
34+
* `add_embeddings(data, **kwargs)`: Adds embedding data to an embedding-based vector store.
35+
* `add_texts(texts, **kwargs)`: Adds raw text or list of texts to a content-based vector store.
36+
* `delete_documents(documents, **kwargs)`: Removes specified documents from a file-based vector store.
37+
* `delete_datasets(data, **kwargs)`: Removes specified datasets from a content-based vector store.
38+
* `delete_embeddings(data, **kwargs)`: Removes embedding data from an embedding-based vector store.
39+
* `update()` : Updates the search parameters of an existing vector store.
40+
* `as_retriever()`: Creates a TeradataVectorStoreRetriever instance that can be used to retrieve relevant documents.
41+
42+
43+
## Installation and Requirements
44+
### Package Requirements:
45+
* Python 3.9 or later
46+
47+
Note: 32-bit Python is not supported.
48+
49+
### Minimum System Requirements:
50+
* Windows 7 (64Bit) or later
51+
* macOS 10.9 (64Bit) or later
52+
* Red Hat 7 or later versions
53+
* Ubuntu 16.04 or later versions
54+
* CentOS 7 or later versions
55+
* SLES 12 or later versions
56+
57+
### Minimum Database Requirements
58+
* Teradata Vantage with database release 20.00.25.XX or later
59+
* Vector Store (Data insights) service is enabled.
60+
61+
62+
### Installation
63+
Use pip to install the Teradata Package for Langchain
64+
65+
Platform | Command
66+
-------------- | ---
67+
macOS/Linux | `pip install langchain-teradata`
68+
Windows | `python -m pip install langchain-teradata`
69+
70+
71+
## License
72+
Use of the Teradata package for LangChain is governed by the *Teradata License Agreement*.
73+
After installation, the `LICENSE.pdf` and `LICENSE-3RD-PARTY.pdf` files are located in the langchain-teradata directory.

0 commit comments

Comments
 (0)