|
| 1 | + |
| 2 | +# langchain-teradata |
| 3 | +# Teradata Package for LangChain |
| 4 | +`langchain-teradata` is a Teradata package for Langchain that provides users with access to Teradata's Vector Store capabilities. |
| 5 | + |
| 6 | +For community support, please visit the [Teradata Community](https://support.teradata.com/community?id=community_forum&sys_id=14fe131e1bf7f304682ca8233a4bcb1d). |
| 7 | + |
| 8 | +For Teradata customer support, please visit [Teradata Support](https://support.teradata.com/csm). |
| 9 | + |
| 10 | +Copyright 2025, Teradata. All Rights Reserved. |
| 11 | + |
| 12 | +## Table of Contents |
| 13 | +* [Documentation](#documentation) |
| 14 | +* [Release Notes](#release-notes) |
| 15 | +* [Installation and Requirements](#installation-and-requirements) |
| 16 | +* [Usage Examples](#usage-examples) |
| 17 | +* [License](#license) |
| 18 | + |
| 19 | +## Documentation |
| 20 | +General product information, including installation instructions, is available in the [Teradata Documentation website](https://docs.teradata.com/search/documents?query=Python+package+for+Generative-AI&sort=last_update&virtual-field=title_only&content-lang=en-US). |
| 21 | + |
| 22 | +## Release Notes |
| 23 | +### Version 20.00.00.00 |
| 24 | + * `langchain-teradata 20.00.00.00` marks the first release of the package. |
| 25 | + * Compatible with August Lake drop (Tahoe-1.2.1) . |
| 26 | + * Added methods for managing and creating vector stores: |
| 27 | + |
| 28 | + * `from_documents(name, documents, embedding=None, **kwargs)`: Creates a new vector store, either 'file-based' or 'content-based', depending on the type of input documents. If the input is PDF file(s) or file path(s), a file-based vector store is created. If the input is LangChain Document object(s), a content-based vector store is created. If the store already exists, raises an error. |
| 29 | + * `from_texts(name, texts, embedding=None, **kwargs)`: Creates a content-based vector store from raw text or a list of texts. Supports embedding models and chat completion models. If the store already exists, raises an error. |
| 30 | + * `from_datasets(name, data, embedding=None, **kwargs)`: Creates a content-based vector store from tables or DataFrames, specifying data columns and optional key columns, with embedding model support. If the store already exists, raises an error. |
| 31 | + * `from_embeddings(name, data, **kwargs)`: Creates an embedding-based vector store from pre-embedded tables or DataFrames, specifying the embedding columns. If the store already exists, raises an error. |
| 32 | + * `add_documents(documents, **kwargs)`: Adds documents (PDFs, directories, wildcards or Langchain Documents) to an existing vector store. Automatically creates the store if it does not exist. |
| 33 | + * `add_datasets(data, **kwargs)`: Adds tables or DataFrames to a content-based vector store. Creates the store if needed. |
| 34 | + * `add_embeddings(data, **kwargs)`: Adds embedding data to an embedding-based vector store. |
| 35 | + * `add_texts(texts, **kwargs)`: Adds raw text or list of texts to a content-based vector store. |
| 36 | + * `delete_documents(documents, **kwargs)`: Removes specified documents from a file-based vector store. |
| 37 | + * `delete_datasets(data, **kwargs)`: Removes specified datasets from a content-based vector store. |
| 38 | + * `delete_embeddings(data, **kwargs)`: Removes embedding data from an embedding-based vector store. |
| 39 | + * `update()` : Updates the search parameters of an existing vector store. |
| 40 | + * `as_retriever()`: Creates a TeradataVectorStoreRetriever instance that can be used to retrieve relevant documents. |
| 41 | + |
| 42 | + |
| 43 | +## Installation and Requirements |
| 44 | +### Package Requirements: |
| 45 | +* Python 3.9 or later |
| 46 | + |
| 47 | +Note: 32-bit Python is not supported. |
| 48 | + |
| 49 | +### Minimum System Requirements: |
| 50 | +* Windows 7 (64Bit) or later |
| 51 | +* macOS 10.9 (64Bit) or later |
| 52 | +* Red Hat 7 or later versions |
| 53 | +* Ubuntu 16.04 or later versions |
| 54 | +* CentOS 7 or later versions |
| 55 | +* SLES 12 or later versions |
| 56 | + |
| 57 | +### Minimum Database Requirements |
| 58 | +* Teradata Vantage with database release 20.00.25.XX or later |
| 59 | +* Vector Store (Data insights) service is enabled. |
| 60 | + |
| 61 | + |
| 62 | +### Installation |
| 63 | +Use pip to install the Teradata Package for Langchain |
| 64 | + |
| 65 | +Platform | Command |
| 66 | +-------------- | --- |
| 67 | +macOS/Linux | `pip install langchain-teradata` |
| 68 | +Windows | `python -m pip install langchain-teradata` |
| 69 | + |
| 70 | + |
| 71 | +## License |
| 72 | +Use of the Teradata package for LangChain is governed by the *Teradata License Agreement*. |
| 73 | +After installation, the `LICENSE.pdf` and `LICENSE-3RD-PARTY.pdf` files are located in the langchain-teradata directory. |
0 commit comments