Skip to content

[Feature Request] Complete BAR (Backup and Restore) Tools Implementation for DSA IntegrationΒ #162

@Asimz4321

Description

@Asimz4321

🎯 Feature Request: Complete BAR Tools Implementation

Summary

Implement a comprehensive suite of BAR (Backup and Restore) tools to integrate AI agents with Teradata DSA (Data Stream Architecture) for enterprise-grade backup management across multiple storage solutions.

Current Status

  • βœ… Foundation Complete: bar_manageDsaDiskFileSystem tool implemented and tested
  • βœ… Architecture Documented: DSA integration diagram and comprehensive documentation
  • 🚧 15 Additional Tools Planned: Complete multi-cloud and enterprise storage support

Proposed Implementation

πŸ—οΈ Architecture Overview

The BAR tools will provide AI agents with direct access to Teradata DSA backup operations through a layered architecture:

flowchart TD
    %% AI Agent Layer
    User[πŸ‘€ User] --> LLM[πŸ€– AI Agent] --> Output[πŸ“„ Output]
    
    %% MCP Integration
    LLM --> MCP[πŸ”Œ MCP Server]
    MCP --> API[🌐 DSA API]
    API --> DSC[πŸŽ›οΈ DSC]
    
    %% DSA Infrastructure
    DSC --> DSMain[πŸ“Š DSMain]
    DSC --> BarNC[πŸ“¦ BarNC]
    
    %% Data Flow
    DB[(πŸ—„οΈ Database)] <--> DSMain
    DSMain <--> BarNC
    BarNC --> Storage{πŸ’Ύ Storage}
    
    %% Storage Options
    Storage --> Disk[πŸ“ Disk]
    Storage --> Cloud[☁️ Cloud]
    Storage --> Enterprise[πŸ”’ Enterprise]
    
    %% Styling
    classDef primary fill:#e3f2fd,stroke:#1976d2
    classDef secondary fill:#f3e5f5,stroke:#7b1fa2
    classDef storage fill:#e8f5e8,stroke:#388e3c
    
    class User,LLM,Output primary
    class MCP,API,DSC secondary
    class DSMain,BarNC,DB,Storage,Disk,Cloud,Enterprise storage
Loading

πŸ“‹ Total Estimated Tools 16 (1 βœ… Developed, 15 🚧 Planned)

Storage Configuration Tools (6/16)

  • bar_manageDsaDiskFileSystem βœ… Implemented
  • bar_manageAwsS3 - AWS S3 bucket configurations
  • bar_manageAzureBlob - Azure Blob Storage configurations
  • bar_manageGoogleCloud - Google Cloud Storage configurations
  • bar_manageNetBackup - NetBackup enterprise storage
  • bar_manageIbmSpectrum - IBM Spectrum Protect storage

Infrastructure Management Tools (2/16)

  • bar_manageMediaServer - BarNC configurations
  • bar_manageTeradataSystem - DSMain configurations

Target Group Management Tools (6/16)

  • bar_manageDiskFileTargetGroup - Disk file storage solutions
  • bar_manageAwsS3TargetGroup - AWS S3 storage solutions
  • bar_manageAzureBlobTargetGroup - Azure Blob storage solutions
  • bar_manageGoogleCloudTargetGroup - Google Cloud storage solutions
  • bar_manageNetBackupTargetGroup - NetBackup storage solutions
  • bar_manageIbmSpectrumTargetGroup - IBM Spectrum storage solutions

Operations Management Tools (2/16)

  • bar_manageJob - Backup/restore job lifecycle
  • bar_manageSaveSets - Backup files/objects management

πŸ’Ό Business Value

For Database Administrators

  • Unified Interface: Single AI-driven interface for all backup operations
  • Multi-Cloud Support: Seamless integration across AWS, Azure, Google Cloud
  • Enterprise Ready: NetBackup and IBM Spectrum Protect support
  • Automated Operations: AI-assisted backup planning and execution

For Organizations

  • Cost Optimization: AI-driven storage tier recommendations
  • Compliance Ready: Automated backup validation and reporting
  • Disaster Recovery: Comprehensive restore capabilities
  • Scalability: Support for enterprise-scale backup operations

πŸ”§ Technical Implementation

Core Components

  • DSA Client: HTTP API communication layer (βœ… Complete)
  • Error Handling: Comprehensive error management (βœ… Complete)
  • Logging: Structured logging throughout (βœ… Complete)
  • Testing Framework: Automated test validation (βœ… Complete)

Implementation Pattern

Each tool follows a consistent pattern with clear naming conventions:

Tool Registration:

  • AI Agent sees: bar_[toolName] (e.g., bar_manageDsaDiskFileSystem)
  • Internal handler: handle_bar_[toolName] (e.g., handle_bar_manageDsaDiskFileSystem)

Implementation Structure:

def handle_bar_[toolName](operation: str, **kwargs):
    # 1. Input validation
    # 2. DSA API call via dsa_client  
    # 3. Response processing
    # 4. Formatted output
    # 5. Error handling
    
    # Tool metadata registration:
    return {
        "tool_name": "bar_[toolName]",  # ← What AI agent calls
        "content": formatted_response
    }

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions