|
| 1 | +import pandas as pd |
| 2 | +from fmp_py.fmp_base import FmpBase |
| 3 | +import os |
| 4 | +import pendulum |
| 5 | +from dotenv import load_dotenv |
| 6 | + |
| 7 | +load_dotenv() |
| 8 | + |
| 9 | + |
| 10 | +""" |
| 11 | +This class provides methods for retrieving IPO calendar data from the Financial Modeling Prep API. |
| 12 | +Ref: https://site.financialmodelingprep.com/developer/docs#ipo-calendar |
| 13 | +
|
| 14 | +def ipo_calendar_by_symbol(self, from_date: str, to_date: str) -> pd.DataFrame: |
| 15 | + Reference: https://site.financialmodelingprep.com/developer/docs#ipo-confirmed-ipo-calendar |
| 16 | + |
| 17 | +def ipo_prospectus(self, from_date: str, to_date: str) -> pd.DataFrame: |
| 18 | + Reference: https://site.financialmodelingprep.com/developer/docs#ipo-prospectus-ipo-calendar |
| 19 | +
|
| 20 | +def ipo_confirmed(self, from_date: str, to_date: str) -> pd.DataFrame: |
| 21 | + Reference: https://site.financialmodelingprep.com/developer/docs#ipo-calender-by-ipo-calendar |
| 22 | +""" |
| 23 | + |
| 24 | + |
| 25 | +class FmpIpoCalendar(FmpBase): |
| 26 | + def __init__(self, api_key: str = os.getenv("FMP_API_KEY")): |
| 27 | + super().__init__(api_key) |
| 28 | + |
| 29 | + ############################# |
| 30 | + # IPO Calendar by Symbol |
| 31 | + ############################# |
| 32 | + def ipo_calendar_by_symbol(self, from_date: str, to_date: str) -> pd.DataFrame: |
| 33 | + """ |
| 34 | + Retrieves IPO calendar data for a specific symbol within a given date range. |
| 35 | + Args: |
| 36 | + from_date (str): The starting date of the date range in "YYYY-MM-DD" format. |
| 37 | + to_date (str): The ending date of the date range in "YYYY-MM-DD" format. |
| 38 | + Returns: |
| 39 | + pd.DataFrame: A DataFrame containing IPO calendar data for the specified symbol within the given date range. |
| 40 | + """ |
| 41 | + |
| 42 | + from_date = pendulum.parse(from_date).format("YYYY-MM-DD") |
| 43 | + to_date = pendulum.parse(to_date).format("YYYY-MM-DD") |
| 44 | + if from_date > to_date: |
| 45 | + raise ValueError("from_date must be less than or equal to to_date") |
| 46 | + |
| 47 | + url = "v3/ipo_calendar" |
| 48 | + params = {"from": from_date, "to": to_date} |
| 49 | + |
| 50 | + response = self.get_request(url, params) |
| 51 | + |
| 52 | + if not response: |
| 53 | + raise ValueError("Error fetching IPO calendar data") |
| 54 | + |
| 55 | + data_df = ( |
| 56 | + pd.DataFrame(response) |
| 57 | + .fillna(0) |
| 58 | + .rename( |
| 59 | + columns={ |
| 60 | + "date": "date", |
| 61 | + "company": "company", |
| 62 | + "symbol": "symbol", |
| 63 | + "exchange": "exchange", |
| 64 | + "actions": "actions", |
| 65 | + "shares": "shares", |
| 66 | + "priceRange": "price_range", |
| 67 | + "marketCap": "market_cap", |
| 68 | + } |
| 69 | + ) |
| 70 | + .astype( |
| 71 | + { |
| 72 | + "date": "datetime64[ns]", |
| 73 | + "company": "str", |
| 74 | + "symbol": "str", |
| 75 | + "exchange": "str", |
| 76 | + "actions": "str", |
| 77 | + "shares": "int", |
| 78 | + "price_range": "string", |
| 79 | + "market_cap": "int", |
| 80 | + } |
| 81 | + ) |
| 82 | + .sort_values(by="date", ascending=True) |
| 83 | + .reset_index(drop=True) |
| 84 | + ) |
| 85 | + |
| 86 | + return data_df |
| 87 | + |
| 88 | + ############################# |
| 89 | + # IPO Prspectus |
| 90 | + ############################# |
| 91 | + def ipo_prospectus(self, from_date: str, to_date: str) -> pd.DataFrame: |
| 92 | + """ |
| 93 | + Retrieves IPO prospectus data from the specified date range. |
| 94 | + Args: |
| 95 | + from_date (str): The starting date of the date range in "YYYY-MM-DD" format. |
| 96 | + to_date (str): The ending date of the date range in "YYYY-MM-DD" format. |
| 97 | + Returns: |
| 98 | + pd.DataFrame: A DataFrame containing IPO prospectus data with the following columns: |
| 99 | + - symbol (str): The symbol of the IPO. |
| 100 | + - cik (str): The CIK (Central Index Key) of the IPO. |
| 101 | + - form (str): The form type of the IPO. |
| 102 | + - filing_date (datetime64[ns]): The filing date of the IPO. |
| 103 | + - accepted_date (datetime64[ns]): The accepted date of the IPO. |
| 104 | + - ipo_date (datetime64[ns]): The IPO date. |
| 105 | + - price_public_per_share (float): The price per share for the public offering. |
| 106 | + - price_public_total (float): The total price for the public offering. |
| 107 | + - discounts_and_commissions_per_share (float): The discounts and commissions per share. |
| 108 | + - discounts_and_commissions_total (float): The total discounts and commissions. |
| 109 | + - proceeds_before_expenses_per_share (float): The proceeds per share before expenses. |
| 110 | + - proceeds_before_expenses_total (float): The total proceeds before expenses. |
| 111 | + - url (str): The URL of the IPO prospectus. |
| 112 | + Raises: |
| 113 | + ValueError: If from_date is greater than to_date or if there is an error fetching the IPO calendar data. |
| 114 | + """ |
| 115 | + |
| 116 | + from_date = pendulum.parse(from_date).format("YYYY-MM-DD") |
| 117 | + to_date = pendulum.parse(to_date).format("YYYY-MM-DD") |
| 118 | + if from_date > to_date: |
| 119 | + raise ValueError("from_date must be less than or equal to to_date") |
| 120 | + |
| 121 | + url = "v4/ipo-calendar-prospectus" |
| 122 | + params = {"from": from_date, "to": to_date} |
| 123 | + |
| 124 | + response = self.get_request(url, params) |
| 125 | + |
| 126 | + if not response: |
| 127 | + raise ValueError("Error fetching IPO calendar data") |
| 128 | + |
| 129 | + data_df = ( |
| 130 | + pd.DataFrame(response) |
| 131 | + .fillna("") |
| 132 | + .rename( |
| 133 | + columns={ |
| 134 | + "symbol": "symbol", |
| 135 | + "cik": "cik", |
| 136 | + "form": "form", |
| 137 | + "filingDate": "filing_date", |
| 138 | + "acceptedDate": "accepted_date", |
| 139 | + "ipoDate": "ipo_date", |
| 140 | + "pricePublicPerShare": "price_public_per_share", |
| 141 | + "pricePublicTotal": "price_public_total", |
| 142 | + "discountsAndCommissionsPerShare": "discounts_and_commissions_per_share", |
| 143 | + "discountsAndCommissionsTotal": "discounts_and_commissions_total", |
| 144 | + "proceedsBeforeExpensesPerShare": "proceeds_before_expenses_per_share", |
| 145 | + "proceedsBeforeExpensesTotal": "proceeds_before_expenses_total", |
| 146 | + "url": "url", |
| 147 | + } |
| 148 | + ) |
| 149 | + .astype( |
| 150 | + { |
| 151 | + "symbol": "str", |
| 152 | + "cik": "str", |
| 153 | + "form": "str", |
| 154 | + "filing_date": "datetime64[ns]", |
| 155 | + "accepted_date": "datetime64[ns]", |
| 156 | + "ipo_date": "datetime64[ns]", |
| 157 | + "price_public_per_share": "float", |
| 158 | + "price_public_total": "float", |
| 159 | + "discounts_and_commissions_per_share": "float", |
| 160 | + "discounts_and_commissions_total": "float", |
| 161 | + "proceeds_before_expenses_per_share": "float", |
| 162 | + "proceeds_before_expenses_total": "float", |
| 163 | + "url": "str", |
| 164 | + } |
| 165 | + ) |
| 166 | + .sort_values(by="filing_date", ascending=True) |
| 167 | + .reset_index(drop=True) |
| 168 | + ) |
| 169 | + |
| 170 | + return data_df |
| 171 | + |
| 172 | + ############################# |
| 173 | + # IPO Confirmed |
| 174 | + ############################# |
| 175 | + def ipo_confirmed(self, from_date: str, to_date: str) -> pd.DataFrame: |
| 176 | + """ |
| 177 | + Retrieves the IPO calendar data for confirmed IPOs within the specified date range. |
| 178 | + Args: |
| 179 | + from_date (str): The start date of the date range in the format "YYYY-MM-DD". |
| 180 | + to_date (str): The end date of the date range in the format "YYYY-MM-DD". |
| 181 | + Returns: |
| 182 | + pd.DataFrame: A DataFrame containing the IPO calendar data for confirmed IPOs, sorted by filing date. |
| 183 | + Raises: |
| 184 | + ValueError: If from_date is greater than to_date or if there is an error fetching the IPO calendar data. |
| 185 | + """ |
| 186 | + |
| 187 | + from_date = pendulum.parse(from_date).format("YYYY-MM-DD") |
| 188 | + to_date = pendulum.parse(to_date).format("YYYY-MM-DD") |
| 189 | + if from_date > to_date: |
| 190 | + raise ValueError("from_date must be less than or equal to to_date") |
| 191 | + |
| 192 | + url = "v4/ipo-calendar-confirmed" |
| 193 | + params = {"from": from_date, "to": to_date} |
| 194 | + |
| 195 | + response = self.get_request(url, params) |
| 196 | + |
| 197 | + if not response: |
| 198 | + raise ValueError("Error fetching IPO calendar data") |
| 199 | + |
| 200 | + data_df = ( |
| 201 | + pd.DataFrame(response) |
| 202 | + .fillna("") |
| 203 | + .rename( |
| 204 | + columns={ |
| 205 | + "symbol": "symbol", |
| 206 | + "cik": "cik", |
| 207 | + "form": "form", |
| 208 | + "filingDate": "filing_date", |
| 209 | + "acceptedDate": "accepted_date", |
| 210 | + "effectivenessDate": "effectiveness_date", |
| 211 | + "url": "url", |
| 212 | + } |
| 213 | + ) |
| 214 | + .astype( |
| 215 | + { |
| 216 | + "symbol": "string", |
| 217 | + "cik": "string", |
| 218 | + "form": "string", |
| 219 | + "filing_date": "datetime64[ns]", |
| 220 | + "accepted_date": "datetime64[ns]", |
| 221 | + "effectiveness_date": "datetime64[ns]", |
| 222 | + "url": "string", |
| 223 | + } |
| 224 | + ) |
| 225 | + .sort_values(by="filing_date", ascending=True) |
| 226 | + .reset_index(drop=True) |
| 227 | + ) |
| 228 | + |
| 229 | + return data_df |
0 commit comments