Skip to content

Commit 5b9da0f

Browse files
Documentation for 643e0a9
1 parent 724be2d commit 5b9da0f

6 files changed

+113
-169
lines changed

d0/da2/number__of__positive__divisors_8cpp.html

Lines changed: 49 additions & 58 deletions
Original file line numberDiff line numberDiff line change
@@ -120,7 +120,6 @@
120120
<p>C++ Program to calculate the number of positive divisors.
121121
<a href="#details">More...</a></p>
122122
<div class="textblock"><code>#include &lt;cassert&gt;</code><br />
123-
<code>#include &lt;iostream&gt;</code><br />
124123
</div><div class="textblock"><div class="dynheader">
125124
Include dependency graph for number_of_positive_divisors.cpp:</div>
126125
<div class="dyncontent">
@@ -165,21 +164,12 @@ <h2 class="memtitle"><span class="permalink"><a href="#ae66f6b31b5ad750f1fe042a7
165164
</div><div class="memdoc">
166165
<p>Main function </p>
167166

168-
<p class="definition">Definition at line <a class="el" href="../../d0/da2/number__of__positive__divisors_8cpp_source.html#l00081">81</a> of file <a class="el" href="../../d0/da2/number__of__positive__divisors_8cpp_source.html">number_of_positive_divisors.cpp</a>.</p>
169-
<div class="fragment"><div class="line"><span class="lineno"> 81</span> {</div>
170-
<div class="line"><span class="lineno"> 82</span> <a class="code hl_function" href="#a88ec9ad42717780d6caaff9d3d6977f9">tests</a>();</div>
171-
<div class="line"><span class="lineno"> 83</span> <span class="keywordtype">int</span> n;</div>
172-
<div class="line"><span class="lineno"> 84</span> std::cin &gt;&gt; n;</div>
173-
<div class="line"><span class="lineno"> 85</span> <span class="keywordflow">if</span> (n == 0) {</div>
174-
<div class="line"><span class="lineno"> 86</span> std::cout &lt;&lt; <span class="stringliteral">&quot;All non-zero numbers are divisors of 0 !&quot;</span> &lt;&lt; std::endl;</div>
175-
<div class="line"><span class="lineno"> 87</span> } <span class="keywordflow">else</span> {</div>
176-
<div class="line"><span class="lineno"> 88</span> std::cout &lt;&lt; <span class="stringliteral">&quot;Number of positive divisors is : &quot;</span>;</div>
177-
<div class="line"><span class="lineno"> 89</span> std::cout &lt;&lt; <a class="code hl_function" href="#ad89ccced8504b5116046cfa03066ffeb">number_of_positive_divisors</a>(n) &lt;&lt; std::endl;</div>
178-
<div class="line"><span class="lineno"> 90</span> }</div>
179-
<div class="line"><span class="lineno"> 91</span> <span class="keywordflow">return</span> 0;</div>
180-
<div class="line"><span class="lineno"> 92</span>}</div>
181-
<div class="ttc" id="anumber__of__positive__divisors_8cpp_html_a88ec9ad42717780d6caaff9d3d6977f9"><div class="ttname"><a href="#a88ec9ad42717780d6caaff9d3d6977f9">tests</a></div><div class="ttdeci">void tests()</div><div class="ttdef"><b>Definition</b> <a href="../../d0/da2/number__of__positive__divisors_8cpp_source.html#l00070">number_of_positive_divisors.cpp:70</a></div></div>
182-
<div class="ttc" id="anumber__of__positive__divisors_8cpp_html_ad89ccced8504b5116046cfa03066ffeb"><div class="ttname"><a href="#ad89ccced8504b5116046cfa03066ffeb">number_of_positive_divisors</a></div><div class="ttdeci">int number_of_positive_divisors(int n)</div><div class="ttdef"><b>Definition</b> <a href="../../d0/da2/number__of__positive__divisors_8cpp_source.html#l00033">number_of_positive_divisors.cpp:33</a></div></div>
167+
<p class="definition">Definition at line <a class="el" href="../../d0/da2/number__of__positive__divisors_8cpp_source.html#l00080">80</a> of file <a class="el" href="../../d0/da2/number__of__positive__divisors_8cpp_source.html">number_of_positive_divisors.cpp</a>.</p>
168+
<div class="fragment"><div class="line"><span class="lineno"> 80</span> {</div>
169+
<div class="line"><span class="lineno"> 81</span> <a class="code hl_function" href="#a88ec9ad42717780d6caaff9d3d6977f9">tests</a>();</div>
170+
<div class="line"><span class="lineno"> 82</span> <span class="keywordflow">return</span> 0;</div>
171+
<div class="line"><span class="lineno"> 83</span>}</div>
172+
<div class="ttc" id="anumber__of__positive__divisors_8cpp_html_a88ec9ad42717780d6caaff9d3d6977f9"><div class="ttname"><a href="#a88ec9ad42717780d6caaff9d3d6977f9">tests</a></div><div class="ttdeci">void tests()</div><div class="ttdef"><b>Definition</b> <a href="../../d0/da2/number__of__positive__divisors_8cpp_source.html#l00069">number_of_positive_divisors.cpp:69</a></div></div>
183173
</div><!-- fragment -->
184174
</div>
185175
</div>
@@ -205,40 +195,40 @@ <h2 class="memtitle"><span class="permalink"><a href="#ad89ccced8504b5116046cfa0
205195
</dl>
206196
<dl class="section return"><dt>Returns</dt><dd>number of positive divisors of n (or 1 if n = 0) </dd></dl>
207197

208-
<p class="definition">Definition at line <a class="el" href="../../d0/da2/number__of__positive__divisors_8cpp_source.html#l00033">33</a> of file <a class="el" href="../../d0/da2/number__of__positive__divisors_8cpp_source.html">number_of_positive_divisors.cpp</a>.</p>
209-
<div class="fragment"><div class="line"><span class="lineno"> 33</span> {</div>
210-
<div class="line"><span class="lineno"> 34</span> <span class="keywordflow">if</span> (n &lt; 0) {</div>
211-
<div class="line"><span class="lineno"> 35</span> n = -n; <span class="comment">// take the absolute value of n</span></div>
212-
<div class="line"><span class="lineno"> 36</span> }</div>
213-
<div class="line"><span class="lineno"> 37</span> </div>
214-
<div class="line"><span class="lineno"> 38</span> <span class="keywordtype">int</span> number_of_divisors = 1;</div>
215-
<div class="line"><span class="lineno"> 39</span> </div>
216-
<div class="line"><span class="lineno"> 40</span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 2; i * i &lt;= n; i++) {</div>
217-
<div class="line"><span class="lineno"> 41</span> <span class="comment">// This part is doing the prime factorization.</span></div>
218-
<div class="line"><span class="lineno"> 42</span> <span class="comment">// Note that we cannot find a composite divisor of n unless we would</span></div>
219-
<div class="line"><span class="lineno"> 43</span> <span class="comment">// already previously find the corresponding prime divisor and dvided</span></div>
220-
<div class="line"><span class="lineno"> 44</span> <span class="comment">// n by that prime. Therefore, all the divisors found here will</span></div>
221-
<div class="line"><span class="lineno"> 45</span> <span class="comment">// actually be primes.</span></div>
222-
<div class="line"><span class="lineno"> 46</span> <span class="comment">// The loop terminates early when it is left with a number n which</span></div>
223-
<div class="line"><span class="lineno"> 47</span> <span class="comment">// does not have a divisor smaller or equal to sqrt(n) - that means</span></div>
224-
<div class="line"><span class="lineno"> 48</span> <span class="comment">// the remaining number is a prime itself.</span></div>
225-
<div class="line"><span class="lineno"> 49</span> <span class="keywordtype">int</span> prime_exponent = 0;</div>
226-
<div class="line"><span class="lineno"> 50</span> <span class="keywordflow">while</span> (n % i == 0) {</div>
227-
<div class="line"><span class="lineno"> 51</span> <span class="comment">// Repeatedly divide n by the prime divisor n to compute</span></div>
228-
<div class="line"><span class="lineno"> 52</span> <span class="comment">// the exponent (e_i in the algorithm description).</span></div>
229-
<div class="line"><span class="lineno"> 53</span> prime_exponent++;</div>
230-
<div class="line"><span class="lineno"> 54</span> n /= i;</div>
231-
<div class="line"><span class="lineno"> 55</span> }</div>
232-
<div class="line"><span class="lineno"> 56</span> number_of_divisors *= prime_exponent + 1;</div>
233-
<div class="line"><span class="lineno"> 57</span> }</div>
234-
<div class="line"><span class="lineno"> 58</span> <span class="keywordflow">if</span> (n &gt; 1) {</div>
235-
<div class="line"><span class="lineno"> 59</span> <span class="comment">// In case the remaining number n is a prime number itself</span></div>
236-
<div class="line"><span class="lineno"> 60</span> <span class="comment">// (essentially p_k^1) the final answer is also multiplied by (e_k+1).</span></div>
237-
<div class="line"><span class="lineno"> 61</span> number_of_divisors *= 2;</div>
238-
<div class="line"><span class="lineno"> 62</span> }</div>
239-
<div class="line"><span class="lineno"> 63</span> </div>
240-
<div class="line"><span class="lineno"> 64</span> <span class="keywordflow">return</span> number_of_divisors;</div>
241-
<div class="line"><span class="lineno"> 65</span>}</div>
198+
<p class="definition">Definition at line <a class="el" href="../../d0/da2/number__of__positive__divisors_8cpp_source.html#l00032">32</a> of file <a class="el" href="../../d0/da2/number__of__positive__divisors_8cpp_source.html">number_of_positive_divisors.cpp</a>.</p>
199+
<div class="fragment"><div class="line"><span class="lineno"> 32</span> {</div>
200+
<div class="line"><span class="lineno"> 33</span> <span class="keywordflow">if</span> (n &lt; 0) {</div>
201+
<div class="line"><span class="lineno"> 34</span> n = -n; <span class="comment">// take the absolute value of n</span></div>
202+
<div class="line"><span class="lineno"> 35</span> }</div>
203+
<div class="line"><span class="lineno"> 36</span> </div>
204+
<div class="line"><span class="lineno"> 37</span> <span class="keywordtype">int</span> number_of_divisors = 1;</div>
205+
<div class="line"><span class="lineno"> 38</span> </div>
206+
<div class="line"><span class="lineno"> 39</span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 2; i * i &lt;= n; i++) {</div>
207+
<div class="line"><span class="lineno"> 40</span> <span class="comment">// This part is doing the prime factorization.</span></div>
208+
<div class="line"><span class="lineno"> 41</span> <span class="comment">// Note that we cannot find a composite divisor of n unless we would</span></div>
209+
<div class="line"><span class="lineno"> 42</span> <span class="comment">// already previously find the corresponding prime divisor and dvided</span></div>
210+
<div class="line"><span class="lineno"> 43</span> <span class="comment">// n by that prime. Therefore, all the divisors found here will</span></div>
211+
<div class="line"><span class="lineno"> 44</span> <span class="comment">// actually be primes.</span></div>
212+
<div class="line"><span class="lineno"> 45</span> <span class="comment">// The loop terminates early when it is left with a number n which</span></div>
213+
<div class="line"><span class="lineno"> 46</span> <span class="comment">// does not have a divisor smaller or equal to sqrt(n) - that means</span></div>
214+
<div class="line"><span class="lineno"> 47</span> <span class="comment">// the remaining number is a prime itself.</span></div>
215+
<div class="line"><span class="lineno"> 48</span> <span class="keywordtype">int</span> prime_exponent = 0;</div>
216+
<div class="line"><span class="lineno"> 49</span> <span class="keywordflow">while</span> (n % i == 0) {</div>
217+
<div class="line"><span class="lineno"> 50</span> <span class="comment">// Repeatedly divide n by the prime divisor n to compute</span></div>
218+
<div class="line"><span class="lineno"> 51</span> <span class="comment">// the exponent (e_i in the algorithm description).</span></div>
219+
<div class="line"><span class="lineno"> 52</span> prime_exponent++;</div>
220+
<div class="line"><span class="lineno"> 53</span> n /= i;</div>
221+
<div class="line"><span class="lineno"> 54</span> }</div>
222+
<div class="line"><span class="lineno"> 55</span> number_of_divisors *= prime_exponent + 1;</div>
223+
<div class="line"><span class="lineno"> 56</span> }</div>
224+
<div class="line"><span class="lineno"> 57</span> <span class="keywordflow">if</span> (n &gt; 1) {</div>
225+
<div class="line"><span class="lineno"> 58</span> <span class="comment">// In case the remaining number n is a prime number itself</span></div>
226+
<div class="line"><span class="lineno"> 59</span> <span class="comment">// (essentially p_k^1) the final answer is also multiplied by (e_k+1).</span></div>
227+
<div class="line"><span class="lineno"> 60</span> number_of_divisors *= 2;</div>
228+
<div class="line"><span class="lineno"> 61</span> }</div>
229+
<div class="line"><span class="lineno"> 62</span> </div>
230+
<div class="line"><span class="lineno"> 63</span> <span class="keywordflow">return</span> number_of_divisors;</div>
231+
<div class="line"><span class="lineno"> 64</span>}</div>
242232
</div><!-- fragment -->
243233
</div>
244234
</div>
@@ -258,14 +248,15 @@ <h2 class="memtitle"><span class="permalink"><a href="#a88ec9ad42717780d6caaff9d
258248
</div><div class="memdoc">
259249
<p>Test implementations </p>
260250

261-
<p class="definition">Definition at line <a class="el" href="../../d0/da2/number__of__positive__divisors_8cpp_source.html#l00070">70</a> of file <a class="el" href="../../d0/da2/number__of__positive__divisors_8cpp_source.html">number_of_positive_divisors.cpp</a>.</p>
262-
<div class="fragment"><div class="line"><span class="lineno"> 70</span> {</div>
263-
<div class="line"><span class="lineno"> 71</span> assert(<a class="code hl_function" href="#ad89ccced8504b5116046cfa03066ffeb">number_of_positive_divisors</a>(36) == 9);</div>
264-
<div class="line"><span class="lineno"> 72</span> assert(<a class="code hl_function" href="#ad89ccced8504b5116046cfa03066ffeb">number_of_positive_divisors</a>(-36) == 9);</div>
265-
<div class="line"><span class="lineno"> 73</span> assert(<a class="code hl_function" href="#ad89ccced8504b5116046cfa03066ffeb">number_of_positive_divisors</a>(1) == 1);</div>
266-
<div class="line"><span class="lineno"> 74</span> assert(<a class="code hl_function" href="#ad89ccced8504b5116046cfa03066ffeb">number_of_positive_divisors</a>(2011) == 2); <span class="comment">// 2011 is a prime</span></div>
267-
<div class="line"><span class="lineno"> 75</span> assert(<a class="code hl_function" href="#ad89ccced8504b5116046cfa03066ffeb">number_of_positive_divisors</a>(756) == 24); <span class="comment">// 756 = 2^2 * 3^3 * 7</span></div>
268-
<div class="line"><span class="lineno"> 76</span>}</div>
251+
<p class="definition">Definition at line <a class="el" href="../../d0/da2/number__of__positive__divisors_8cpp_source.html#l00069">69</a> of file <a class="el" href="../../d0/da2/number__of__positive__divisors_8cpp_source.html">number_of_positive_divisors.cpp</a>.</p>
252+
<div class="fragment"><div class="line"><span class="lineno"> 69</span> {</div>
253+
<div class="line"><span class="lineno"> 70</span> assert(<a class="code hl_function" href="#ad89ccced8504b5116046cfa03066ffeb">number_of_positive_divisors</a>(36) == 9);</div>
254+
<div class="line"><span class="lineno"> 71</span> assert(<a class="code hl_function" href="#ad89ccced8504b5116046cfa03066ffeb">number_of_positive_divisors</a>(-36) == 9);</div>
255+
<div class="line"><span class="lineno"> 72</span> assert(<a class="code hl_function" href="#ad89ccced8504b5116046cfa03066ffeb">number_of_positive_divisors</a>(1) == 1);</div>
256+
<div class="line"><span class="lineno"> 73</span> assert(<a class="code hl_function" href="#ad89ccced8504b5116046cfa03066ffeb">number_of_positive_divisors</a>(2011) == 2); <span class="comment">// 2011 is a prime</span></div>
257+
<div class="line"><span class="lineno"> 74</span> assert(<a class="code hl_function" href="#ad89ccced8504b5116046cfa03066ffeb">number_of_positive_divisors</a>(756) == 24); <span class="comment">// 756 = 2^2 * 3^3 * 7</span></div>
258+
<div class="line"><span class="lineno"> 75</span>}</div>
259+
<div class="ttc" id="anumber__of__positive__divisors_8cpp_html_ad89ccced8504b5116046cfa03066ffeb"><div class="ttname"><a href="#ad89ccced8504b5116046cfa03066ffeb">number_of_positive_divisors</a></div><div class="ttdeci">int number_of_positive_divisors(int n)</div><div class="ttdef"><b>Definition</b> <a href="../../d0/da2/number__of__positive__divisors_8cpp_source.html#l00032">number_of_positive_divisors.cpp:32</a></div></div>
269260
</div><!-- fragment -->
270261
</div>
271262
</div>

0 commit comments

Comments
 (0)