|
| 1 | +/** |
| 2 | + * @file |
| 3 | + * @brief Hybrid of QuickSort, InsertionSort and SelectionSort |
| 4 | + * https://es.wikipedia.org/wiki/Quicksort |
| 5 | + * https://en.wikipedia.org/wiki/Selection_sort |
| 6 | + * https://en.wikipedia.org/wiki/Insertion_sort |
| 7 | + * @details |
| 8 | + * this is a hybrid sorting algorithm |
| 9 | + * uses quicksort to split the array in two |
| 10 | + * sorts the left half with insertion sort |
| 11 | + * sorts the right half with selection sort |
| 12 | + * created for educational purposes not optimized for speed. |
| 13 | + * @author Cesar (https://github.com/cesar-011) |
| 14 | + * @see quick_sort.cpp, insertion_sort.cpp, selection_sort_iterative.cpp |
| 15 | + */ |
| 16 | + |
| 17 | +#include <algorithm> // for std::is_sorted |
| 18 | +#include <cassert> // for assert |
| 19 | +#include <iostream> // for IO |
| 20 | +#include <vector> // for vector in test |
| 21 | + |
| 22 | +/** |
| 23 | + * @brief swap two elements of an array |
| 24 | + */ |
| 25 | +template <typename T> |
| 26 | +void swap(T *arr, int i, int j) { |
| 27 | + T aux = arr[i]; |
| 28 | + arr[i] = arr[j]; |
| 29 | + arr[j] = aux; |
| 30 | +} |
| 31 | + |
| 32 | +/** |
| 33 | + * @brief print the array |
| 34 | + */ |
| 35 | +template <typename T> |
| 36 | +void print_array(T *arr, int size) { |
| 37 | + for (int i = 0; i < size; i++) { |
| 38 | + std::cout << arr[i] << " "; |
| 39 | + } |
| 40 | +} |
| 41 | + |
| 42 | +/** |
| 43 | + * @namespace sorting |
| 44 | + * @brief Sorting algorithms |
| 45 | + */ |
| 46 | +namespace sorting { |
| 47 | + |
| 48 | +/** |
| 49 | + * @namespace hybrid_quick_insert_select |
| 50 | + * @brief Hybrid of QuickSort, InsertionSort and SelectionSort algorithms |
| 51 | + */ |
| 52 | +namespace hybrid_quick_insert_select { |
| 53 | + |
| 54 | +/** |
| 55 | + * @brief Sorts an array using a hybrid of QuickSort, Insertion Sort, and |
| 56 | + * Selection Sort. |
| 57 | + * |
| 58 | + * This algorithm partitions the array using QuickSort's partitioning scheme. |
| 59 | + * It then applies Insertion Sort to the left half and Selection Sort to the |
| 60 | + * right half. This hybrid is intended for educational purposes and not |
| 61 | + * optimized for performance. |
| 62 | + * |
| 63 | + * @tparam T Type of the elements in the array. Must support comparison |
| 64 | + * operators. |
| 65 | + * @param arr Pointer to the array to be sorted. |
| 66 | + * @param low Starting index of the subarray to sort. |
| 67 | + * @param high Ending index of the subarray to sort (inclusive). |
| 68 | + */ |
| 69 | +template <typename T> |
| 70 | +void hybrid_quick_insertion_selection(T *arr, int low, int high) { |
| 71 | + if (low >= high) |
| 72 | + return; // Empty range |
| 73 | + // A single iteration of Quicksort partitioning to divide the array into two |
| 74 | + // halves |
| 75 | + int i = low; |
| 76 | + int f = high - 1; |
| 77 | + T pivot = arr[(i + f) / 2]; |
| 78 | + while (i <= f) { |
| 79 | + while (arr[i] < pivot) i++; |
| 80 | + while (arr[f] > pivot) f--; |
| 81 | + if (i <= f) { |
| 82 | + swap(arr, i, f); |
| 83 | + i++; |
| 84 | + f--; |
| 85 | + } |
| 86 | + } |
| 87 | + |
| 88 | + // Insertion at the left |
| 89 | + if (low < f) { |
| 90 | + for (int k = low + 1; k <= f; k++) { |
| 91 | + int key = arr[k]; |
| 92 | + int j = k - 1; |
| 93 | + while (j >= low && arr[j] > key) { |
| 94 | + arr[j + 1] = arr[j]; |
| 95 | + j--; |
| 96 | + } |
| 97 | + arr[j + 1] = key; |
| 98 | + } |
| 99 | + } |
| 100 | + |
| 101 | + // Selection at the right |
| 102 | + if (i < high) { |
| 103 | + for (int k = i; k < high; k++) { |
| 104 | + int minimum = arr[k]; |
| 105 | + int min_ind = k; |
| 106 | + int j = k + 1; |
| 107 | + while (j < high) { |
| 108 | + if (arr[j] < minimum) { |
| 109 | + minimum = arr[j]; |
| 110 | + min_ind = j; |
| 111 | + } |
| 112 | + j++; |
| 113 | + } |
| 114 | + swap(arr, k, min_ind); |
| 115 | + } |
| 116 | + } |
| 117 | +} |
| 118 | +} // namespace hybrid_quick_insert_select |
| 119 | +} // namespace sorting |
| 120 | + |
| 121 | +static void test() { |
| 122 | + using sorting::hybrid_quick_insert_select::hybrid_quick_insertion_selection; |
| 123 | + |
| 124 | + // Test 1: empty |
| 125 | + { |
| 126 | + std::vector<int> arr = {}; |
| 127 | + hybrid_quick_insertion_selection(arr.data(), 0, |
| 128 | + static_cast<int>(arr.size())); |
| 129 | + assert(std::is_sorted(arr.begin(), arr.end())); |
| 130 | + } |
| 131 | + |
| 132 | + // Test 2: one element |
| 133 | + { |
| 134 | + std::vector<int> arr = {42}; |
| 135 | + hybrid_quick_insertion_selection(arr.data(), 0, |
| 136 | + static_cast<int>(arr.size())); |
| 137 | + assert(std::is_sorted(arr.begin(), arr.end())); |
| 138 | + } |
| 139 | + |
| 140 | + // Test 3: positive numbers |
| 141 | + { |
| 142 | + std::vector<int> arr = {1, 2, 3, 4, 5}; |
| 143 | + hybrid_quick_insertion_selection(arr.data(), 0, |
| 144 | + static_cast<int>(arr.size())); |
| 145 | + assert(std::is_sorted(arr.begin(), arr.end())); |
| 146 | + } |
| 147 | + |
| 148 | + // Test 4: positive and negative numbers |
| 149 | + { |
| 150 | + std::vector<int> arr = {-5, 4, -3, 2, 1}; |
| 151 | + hybrid_quick_insertion_selection(arr.data(), 0, |
| 152 | + static_cast<int>(arr.size())); |
| 153 | + assert(std::is_sorted(arr.begin(), arr.end())); |
| 154 | + } |
| 155 | + |
| 156 | + // Test 5: repeated elements |
| 157 | + { |
| 158 | + std::vector<int> arr = {3, 1, 2, 3, 2, 1, 4}; |
| 159 | + hybrid_quick_insertion_selection(arr.data(), 0, |
| 160 | + static_cast<int>(arr.size())); |
| 161 | + assert(std::is_sorted(arr.begin(), arr.end())); |
| 162 | + } |
| 163 | + |
| 164 | + // Test 6: negative numbers |
| 165 | + { |
| 166 | + std::vector<int> arr = {-10, -7, -8, -9, -1, -5}; |
| 167 | + hybrid_quick_insertion_selection(arr.data(), 0, |
| 168 | + static_cast<int>(arr.size())); |
| 169 | + assert(std::is_sorted(arr.begin(), arr.end())); |
| 170 | + } |
| 171 | + |
| 172 | + // Test 7: big array |
| 173 | + { |
| 174 | + std::vector<int> arr(1000); |
| 175 | + for (int i = 0; i < 1000; ++i) { |
| 176 | + arr[i] = 1000 - i; |
| 177 | + } |
| 178 | + hybrid_quick_insertion_selection(arr.data(), 0, |
| 179 | + static_cast<int>(arr.size())); |
| 180 | + assert(std::is_sorted(arr.begin(), arr.end())); |
| 181 | + } |
| 182 | + |
| 183 | + std::cout << "All tests passed successfully!\n"; |
| 184 | +} |
| 185 | + |
| 186 | +/** |
| 187 | + * @brief Main program to demonstrate the hybrid sorting algorithm. |
| 188 | + * |
| 189 | + * Runs the built-in self-tests, then sorts a sample array using the hybrid |
| 190 | + * algorithm that combines QuickSort, Insertion Sort, and Selection Sort. |
| 191 | + * |
| 192 | + * The array is printed before and after sorting to show the result. |
| 193 | + * |
| 194 | + * @return int Program exit code (0 indicates successful execution). |
| 195 | + */ |
| 196 | +int main() { |
| 197 | + test(); // run self-test implementations |
| 198 | + |
| 199 | + // An example |
| 200 | + int N = 8; |
| 201 | + int array[N] = {8, 5, 9, 20, 2, 13, 3, 1}; |
| 202 | + print_array(array, N); |
| 203 | + std::cout << '\n'; |
| 204 | + sorting::hybrid_quick_insert_select::hybrid_quick_insertion_selection(array, |
| 205 | + 0, N); |
| 206 | + print_array(array, N); |
| 207 | + std::cout << '\n'; |
| 208 | + return 0; |
| 209 | +} |
0 commit comments