Skip to content

Commit 709c542

Browse files
Merge branch 'master' into patch-1
2 parents 1beda78 + d438f0f commit 709c542

File tree

3 files changed

+270
-0
lines changed

3 files changed

+270
-0
lines changed

DIRECTORY.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -325,6 +325,7 @@
325325
* [Addition Rule](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/probability/addition_rule.cpp)
326326
* [Bayes Theorem](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/probability/bayes_theorem.cpp)
327327
* [Binomial Dist](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/probability/binomial_dist.cpp)
328+
* [Exponential Dist](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/probability/exponential_dist.cpp)
328329
* [Geometric Dist](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/probability/geometric_dist.cpp)
329330
* [Poisson Dist](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/probability/poisson_dist.cpp)
330331
* [Windowed Median](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/probability/windowed_median.cpp)
@@ -339,6 +340,7 @@
339340
* [Sparse Table](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/range_queries/sparse_table.cpp)
340341

341342
## Search
343+
* [Longest Increasing Subsequence Using Binary Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/Longest_Increasing_Subsequence_using_binary_search.cpp)
342344
* [Binary Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/binary_search.cpp)
343345
* [Exponential Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/exponential_search.cpp)
344346
* [Fibonacci Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/fibonacci_search.cpp)

probability/exponential_dist.cpp

Lines changed: 151 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,151 @@
1+
/**
2+
* @file
3+
* @brief [Exponential
4+
* Distribution](https://en.wikipedia.org/wiki/Exponential_distribution)
5+
*
6+
* The exponential distribution is used to model
7+
* events occuring between a Poisson process like radioactive decay.
8+
*
9+
* \f[P(x, \lambda) = \lambda e^{-\lambda x}\f]
10+
*
11+
* Summary of variables used:
12+
* \f$\lambda\f$ : rate parameter
13+
*/
14+
15+
#include <cassert> // For assert
16+
#include <cmath> // For std::pow
17+
#include <iostream> // For I/O operation
18+
#include <stdexcept> // For std::invalid_argument
19+
#include <string> // For std::string
20+
21+
/**
22+
* @namespace probability
23+
* @brief Probability algorithms
24+
*/
25+
namespace probability {
26+
/**
27+
* @namespace exponential_dist
28+
* @brief Functions for the [Exponential
29+
* Distribution](https://en.wikipedia.org/wiki/Exponential_distribution)
30+
* algorithm implementation
31+
*/
32+
namespace geometric_dist {
33+
/**
34+
* @brief the expected value of the exponential distribution
35+
* @returns \f[\mu = \frac{1}{\lambda}\f]
36+
*/
37+
double exponential_expected(double lambda) {
38+
if (lambda <= 0) {
39+
throw std::invalid_argument("lambda must be greater than 0");
40+
}
41+
return 1 / lambda;
42+
}
43+
44+
/**
45+
* @brief the variance of the exponential distribution
46+
* @returns \f[\sigma^2 = \frac{1}{\lambda^2}\f]
47+
*/
48+
double exponential_var(double lambda) {
49+
if (lambda <= 0) {
50+
throw std::invalid_argument("lambda must be greater than 0");
51+
}
52+
return 1 / pow(lambda, 2);
53+
}
54+
55+
/**
56+
* @brief the standard deviation of the exponential distribution
57+
* @returns \f[\sigma = \frac{1}{\lambda}\f]
58+
*/
59+
double exponential_std(double lambda) {
60+
if (lambda <= 0) {
61+
throw std::invalid_argument("lambda must be greater than 0");
62+
}
63+
return 1 / lambda;
64+
}
65+
} // namespace geometric_dist
66+
} // namespace probability
67+
68+
/**
69+
* @brief Self-test implementations
70+
* @returns void
71+
*/
72+
static void test() {
73+
double lambda_1 = 1;
74+
double expected_1 = 1;
75+
double var_1 = 1;
76+
double std_1 = 1;
77+
78+
double lambda_2 = 2;
79+
double expected_2 = 0.5;
80+
double var_2 = 0.25;
81+
double std_2 = 0.5;
82+
83+
double lambda_3 = 3;
84+
double expected_3 = 0.333333;
85+
double var_3 = 0.111111;
86+
double std_3 = 0.333333;
87+
88+
double lambda_4 = 0; // Test 0
89+
double lambda_5 = -2.3; // Test negative value
90+
91+
const float threshold = 1e-3f;
92+
93+
std::cout << "Test for lambda = 1 \n";
94+
assert(
95+
std::abs(expected_1 - probability::geometric_dist::exponential_expected(
96+
lambda_1)) < threshold);
97+
assert(std::abs(var_1 - probability::geometric_dist::exponential_var(
98+
lambda_1)) < threshold);
99+
assert(std::abs(std_1 - probability::geometric_dist::exponential_std(
100+
lambda_1)) < threshold);
101+
std::cout << "ALL TEST PASSED\n\n";
102+
103+
std::cout << "Test for lambda = 2 \n";
104+
assert(
105+
std::abs(expected_2 - probability::geometric_dist::exponential_expected(
106+
lambda_2)) < threshold);
107+
assert(std::abs(var_2 - probability::geometric_dist::exponential_var(
108+
lambda_2)) < threshold);
109+
assert(std::abs(std_2 - probability::geometric_dist::exponential_std(
110+
lambda_2)) < threshold);
111+
std::cout << "ALL TEST PASSED\n\n";
112+
113+
std::cout << "Test for lambda = 3 \n";
114+
assert(
115+
std::abs(expected_3 - probability::geometric_dist::exponential_expected(
116+
lambda_3)) < threshold);
117+
assert(std::abs(var_3 - probability::geometric_dist::exponential_var(
118+
lambda_3)) < threshold);
119+
assert(std::abs(std_3 - probability::geometric_dist::exponential_std(
120+
lambda_3)) < threshold);
121+
std::cout << "ALL TEST PASSED\n\n";
122+
123+
std::cout << "Test for lambda = 0 \n";
124+
try {
125+
probability::geometric_dist::exponential_expected(lambda_4);
126+
probability::geometric_dist::exponential_var(lambda_4);
127+
probability::geometric_dist::exponential_std(lambda_4);
128+
} catch (std::invalid_argument& err) {
129+
assert(std::string(err.what()) == "lambda must be greater than 0");
130+
}
131+
std::cout << "ALL TEST PASSED\n\n";
132+
133+
std::cout << "Test for lambda = -2.3 \n";
134+
try {
135+
probability::geometric_dist::exponential_expected(lambda_5);
136+
probability::geometric_dist::exponential_var(lambda_5);
137+
probability::geometric_dist::exponential_std(lambda_5);
138+
} catch (std::invalid_argument& err) {
139+
assert(std::string(err.what()) == "lambda must be greater than 0");
140+
}
141+
std::cout << "ALL TEST PASSED\n\n";
142+
}
143+
144+
/**
145+
* @brief Main function
146+
* @return 0 on exit
147+
*/
148+
int main() {
149+
test(); // Self test implementation
150+
return 0;
151+
}
Lines changed: 117 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,117 @@
1+
/**
2+
* @file
3+
* @brief find the length of the Longest Increasing Subsequence (LIS)
4+
* using [Binary Search](https://en.wikipedia.org/wiki/Longest_increasing_subsequence)
5+
* @details
6+
* Given an integer array nums, return the length of the longest strictly
7+
* increasing subsequence.
8+
* The longest increasing subsequence is described as a subsequence of an array
9+
* where: All elements of the subsequence are in increasing order. This subsequence
10+
* itself is of the longest length possible.
11+
12+
* For solving this problem we have Three Approaches :-
13+
14+
* Approach 1 :- Using Brute Force
15+
* The first approach that came to your mind is the Brute Force approach where we
16+
* generate all subsequences and then manually filter the subsequences whose
17+
* elements come in increasing order and then return the longest such subsequence.
18+
* Time Complexity :- O(2^n)
19+
* It's time complexity is exponential. Therefore we will try some other
20+
* approaches.
21+
22+
* Approach 2 :- Using Dynamic Programming
23+
* To generate all subsequences we will use recursion and in the recursive logic we
24+
* will figure out a way to solve this problem. Recursive Logic to solve this
25+
* problem:-
26+
* 1. We only consider the element in the subsequence if the element is grater then
27+
* the last element present in the subsequence
28+
* 2. When we consider the element we will increase the length of subsequence by 1
29+
* Time Complexity: O(N*N)
30+
* Space Complexity: O(N*N) + O(N)
31+
32+
* This approach is better then the previous Brute Force approach so, we can
33+
* consider this approach.
34+
35+
* But when the Constraints for the problem is very larger then this approach fails
36+
37+
* Approach 3 :- Using Binary Search
38+
* Other approaches use additional space to create a new subsequence Array.
39+
* Instead, this solution uses the existing nums Array to build the subsequence
40+
* array. We can do this because the length of the subsequence array will never be
41+
* longer than the current index.
42+
43+
* Time complexity: O(n∗log(n))
44+
* Space complexity: O(1)
45+
46+
* This approach consider Most optimal Approach for solving this problem
47+
48+
* @author [Naman Jain](https://github.com/namanmodi65)
49+
*/
50+
51+
#include <cassert> /// for std::assert
52+
#include <iostream> /// for IO operations
53+
#include <vector> /// for std::vector
54+
#include <algorithm> /// for std::lower_bound
55+
#include <cstdint> /// for std::uint32_t
56+
57+
/**
58+
* @brief Function to find the length of the Longest Increasing Subsequence (LIS)
59+
* using Binary Search
60+
* @tparam T The type of the elements in the input vector
61+
* @param nums The input vector of elements of type T
62+
* @return The length of the longest increasing subsequence
63+
*/
64+
template <typename T>
65+
std::uint32_t longest_increasing_subsequence_using_binary_search(std::vector<T>& nums) {
66+
if (nums.empty()) return 0;
67+
68+
std::vector<T> ans;
69+
ans.push_back(nums[0]);
70+
for (std::size_t i = 1; i < nums.size(); i++) {
71+
if (nums[i] > ans.back()) {
72+
ans.push_back(nums[i]);
73+
} else {
74+
auto idx = std::lower_bound(ans.begin(), ans.end(), nums[i]) - ans.begin();
75+
ans[idx] = nums[i];
76+
}
77+
}
78+
return static_cast<std::uint32_t>(ans.size());
79+
}
80+
81+
/**
82+
* @brief Test cases for Longest Increasing Subsequence function
83+
* @returns void
84+
*/
85+
static void tests() {
86+
std::vector<int> arr = {10, 9, 2, 5, 3, 7, 101, 18};
87+
assert(longest_increasing_subsequence_using_binary_search(arr) == 4);
88+
89+
std::vector<int> arr2 = {0, 1, 0, 3, 2, 3};
90+
assert(longest_increasing_subsequence_using_binary_search(arr2) == 4);
91+
92+
std::vector<int> arr3 = {7, 7, 7, 7, 7, 7, 7};
93+
assert(longest_increasing_subsequence_using_binary_search(arr3) == 1);
94+
95+
std::vector<int> arr4 = {-10, -1, -5, 0, 5, 1, 2};
96+
assert(longest_increasing_subsequence_using_binary_search(arr4) == 5);
97+
98+
std::vector<double> arr5 = {3.5, 1.2, 2.8, 3.1, 4.0};
99+
assert(longest_increasing_subsequence_using_binary_search(arr5) == 4);
100+
101+
std::vector<char> arr6 = {'a', 'b', 'c', 'a', 'd'};
102+
assert(longest_increasing_subsequence_using_binary_search(arr6) == 4);
103+
104+
std::vector<int> arr7 = {};
105+
assert(longest_increasing_subsequence_using_binary_search(arr7) == 0);
106+
107+
std::cout << "All tests have successfully passed!\n";
108+
}
109+
110+
/**
111+
* @brief Main function to run tests
112+
* @returns 0 on exit
113+
*/
114+
int main() {
115+
tests(); // run self test implementation
116+
return 0;
117+
}

0 commit comments

Comments
 (0)