|
| 1 | +/** |
| 2 | + * @file |
| 3 | + * @brief Implementation of [K-Nearest Neighbors algorithm] |
| 4 | + * (https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm). |
| 5 | + * @author [Luiz Carlos Cosmi Filho](https://github.com/luizcarloscf) |
| 6 | + * @details K-nearest neighbors algorithm, also known as KNN or k-NN, is a |
| 7 | + * supervised learning classifier, which uses proximity to make classifications. |
| 8 | + * This implementantion uses the Euclidean Distance as distance metric to find |
| 9 | + * the K-nearest neighbors. |
| 10 | + */ |
| 11 | + |
| 12 | +#include <algorithm> /// for std::transform and std::sort |
| 13 | +#include <cassert> /// for assert |
| 14 | +#include <cmath> /// for std::pow and std::sqrt |
| 15 | +#include <iostream> /// for std::cout |
| 16 | +#include <numeric> /// for std::accumulate |
| 17 | +#include <unordered_map> /// for std::unordered_map |
| 18 | +#include <vector> /// for std::vector |
| 19 | + |
| 20 | +/** |
| 21 | + * @namespace machine_learning |
| 22 | + * @brief Machine learning algorithms |
| 23 | + */ |
| 24 | +namespace machine_learning { |
| 25 | + |
| 26 | +/** |
| 27 | + * @namespace k_nearest_neighbors |
| 28 | + * @brief Functions for the [K-Nearest Neighbors algorithm] |
| 29 | + * (https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm) implementation |
| 30 | + */ |
| 31 | +namespace k_nearest_neighbors { |
| 32 | + |
| 33 | +/** |
| 34 | + * @brief Compute the Euclidean distance between two vectors. |
| 35 | + * |
| 36 | + * @tparam T typename of the vector |
| 37 | + * @param a first unidimentional vector |
| 38 | + * @param b second unidimentional vector |
| 39 | + * @return double scalar representing the Euclidean distance between provided |
| 40 | + * vectors |
| 41 | + */ |
| 42 | +template <typename T> |
| 43 | +double euclidean_distance(const std::vector<T>& a, const std::vector<T>& b) { |
| 44 | + std::vector<double> aux; |
| 45 | + std::transform(a.begin(), a.end(), b.begin(), std::back_inserter(aux), |
| 46 | + [](T x1, T x2) { return std::pow((x1 - x2), 2); }); |
| 47 | + aux.shrink_to_fit(); |
| 48 | + return std::sqrt(std::accumulate(aux.begin(), aux.end(), 0.0)); |
| 49 | +} |
| 50 | + |
| 51 | +/** |
| 52 | + * @brief K-Nearest Neighbors (Knn) class using Euclidean distance as |
| 53 | + * distance metric. |
| 54 | + */ |
| 55 | +class Knn { |
| 56 | + private: |
| 57 | + std::vector<std::vector<double>> X_{}; ///< attributes vector |
| 58 | + std::vector<int> Y_{}; ///< labels vector |
| 59 | + |
| 60 | + public: |
| 61 | + /** |
| 62 | + * @brief Construct a new Knn object. |
| 63 | + * @details Using lazy-learning approch, just holds in memory the dataset. |
| 64 | + * @param X attributes vector |
| 65 | + * @param Y labels vector |
| 66 | + */ |
| 67 | + explicit Knn(std::vector<std::vector<double>>& X, std::vector<int>& Y) |
| 68 | + : X_(X), Y_(Y){}; |
| 69 | + |
| 70 | + /** |
| 71 | + * Copy Constructor for class Knn. |
| 72 | + * |
| 73 | + * @param model instance of class to be copied |
| 74 | + */ |
| 75 | + Knn(const Knn& model) = default; |
| 76 | + |
| 77 | + /** |
| 78 | + * Copy assignment operator for class Knn |
| 79 | + */ |
| 80 | + Knn& operator=(const Knn& model) = default; |
| 81 | + |
| 82 | + /** |
| 83 | + * Move constructor for class Knn |
| 84 | + */ |
| 85 | + Knn(Knn&&) = default; |
| 86 | + |
| 87 | + /** |
| 88 | + * Move assignment operator for class Knn |
| 89 | + */ |
| 90 | + Knn& operator=(Knn&&) = default; |
| 91 | + |
| 92 | + /** |
| 93 | + * @brief Destroy the Knn object |
| 94 | + */ |
| 95 | + ~Knn() = default; |
| 96 | + |
| 97 | + /** |
| 98 | + * @brief Classify sample. |
| 99 | + * @param sample sample |
| 100 | + * @param k number of neighbors |
| 101 | + * @return int label of most frequent neighbors |
| 102 | + */ |
| 103 | + int predict(std::vector<double>& sample, int k) { |
| 104 | + std::vector<int> neighbors; |
| 105 | + std::vector<std::pair<double, int>> distances; |
| 106 | + for (size_t i = 0; i < this->X_.size(); ++i) { |
| 107 | + auto current = this->X_.at(i); |
| 108 | + auto label = this->Y_.at(i); |
| 109 | + auto distance = euclidean_distance(current, sample); |
| 110 | + distances.emplace_back(distance, label); |
| 111 | + } |
| 112 | + std::sort(distances.begin(), distances.end()); |
| 113 | + for (int i = 0; i < k; i++) { |
| 114 | + auto label = distances.at(i).second; |
| 115 | + neighbors.push_back(label); |
| 116 | + } |
| 117 | + std::unordered_map<int, int> frequency; |
| 118 | + for (auto neighbor : neighbors) { |
| 119 | + ++frequency[neighbor]; |
| 120 | + } |
| 121 | + std::pair<int, int> predicted; |
| 122 | + predicted.first = -1; |
| 123 | + predicted.second = -1; |
| 124 | + for (auto& kv : frequency) { |
| 125 | + if (kv.second > predicted.second) { |
| 126 | + predicted.second = kv.second; |
| 127 | + predicted.first = kv.first; |
| 128 | + } |
| 129 | + } |
| 130 | + return predicted.first; |
| 131 | + } |
| 132 | +}; |
| 133 | +} // namespace k_nearest_neighbors |
| 134 | +} // namespace machine_learning |
| 135 | + |
| 136 | +/** |
| 137 | + * @brief Self-test implementations |
| 138 | + * @returns void |
| 139 | + */ |
| 140 | +static void test() { |
| 141 | + std::cout << "------- Test 1 -------" << std::endl; |
| 142 | + std::vector<std::vector<double>> X1 = {{0.0, 0.0}, {0.25, 0.25}, |
| 143 | + {0.0, 0.5}, {0.5, 0.5}, |
| 144 | + {1.0, 0.5}, {1.0, 1.0}}; |
| 145 | + std::vector<int> Y1 = {1, 1, 1, 1, 2, 2}; |
| 146 | + auto model1 = machine_learning::k_nearest_neighbors::Knn(X1, Y1); |
| 147 | + std::vector<double> sample1 = {1.2, 1.2}; |
| 148 | + std::vector<double> sample2 = {0.1, 0.1}; |
| 149 | + std::vector<double> sample3 = {0.1, 0.5}; |
| 150 | + std::vector<double> sample4 = {1.0, 0.75}; |
| 151 | + assert(model1.predict(sample1, 2) == 2); |
| 152 | + assert(model1.predict(sample2, 2) == 1); |
| 153 | + assert(model1.predict(sample3, 2) == 1); |
| 154 | + assert(model1.predict(sample4, 2) == 2); |
| 155 | + std::cout << "... Passed" << std::endl; |
| 156 | + std::cout << "------- Test 2 -------" << std::endl; |
| 157 | + std::vector<std::vector<double>> X2 = { |
| 158 | + {0.0, 0.0, 0.0}, {0.25, 0.25, 0.0}, {0.0, 0.5, 0.0}, {0.5, 0.5, 0.0}, |
| 159 | + {1.0, 0.5, 0.0}, {1.0, 1.0, 0.0}, {1.0, 1.0, 1.0}, {1.5, 1.5, 1.0}}; |
| 160 | + std::vector<int> Y2 = {1, 1, 1, 1, 2, 2, 3, 3}; |
| 161 | + auto model2 = machine_learning::k_nearest_neighbors::Knn(X2, Y2); |
| 162 | + std::vector<double> sample5 = {1.2, 1.2, 0.0}; |
| 163 | + std::vector<double> sample6 = {0.1, 0.1, 0.0}; |
| 164 | + std::vector<double> sample7 = {0.1, 0.5, 0.0}; |
| 165 | + std::vector<double> sample8 = {1.0, 0.75, 1.0}; |
| 166 | + assert(model2.predict(sample5, 2) == 2); |
| 167 | + assert(model2.predict(sample6, 2) == 1); |
| 168 | + assert(model2.predict(sample7, 2) == 1); |
| 169 | + assert(model2.predict(sample8, 2) == 3); |
| 170 | + std::cout << "... Passed" << std::endl; |
| 171 | + std::cout << "------- Test 3 -------" << std::endl; |
| 172 | + std::vector<std::vector<double>> X3 = {{0.0}, {1.0}, {2.0}, {3.0}, |
| 173 | + {4.0}, {5.0}, {6.0}, {7.0}}; |
| 174 | + std::vector<int> Y3 = {1, 1, 1, 1, 2, 2, 2, 2}; |
| 175 | + auto model3 = machine_learning::k_nearest_neighbors::Knn(X3, Y3); |
| 176 | + std::vector<double> sample9 = {0.5}; |
| 177 | + std::vector<double> sample10 = {2.9}; |
| 178 | + std::vector<double> sample11 = {5.5}; |
| 179 | + std::vector<double> sample12 = {7.5}; |
| 180 | + assert(model3.predict(sample9, 3) == 1); |
| 181 | + assert(model3.predict(sample10, 3) == 1); |
| 182 | + assert(model3.predict(sample11, 3) == 2); |
| 183 | + assert(model3.predict(sample12, 3) == 2); |
| 184 | + std::cout << "... Passed" << std::endl; |
| 185 | +} |
| 186 | + |
| 187 | +/** |
| 188 | + * @brief Main function |
| 189 | + * @param argc commandline argument count (ignored) |
| 190 | + * @param argv commandline array of arguments (ignored) |
| 191 | + * @return int 0 on exit |
| 192 | + */ |
| 193 | +int main(int argc, char* argv[]) { |
| 194 | + test(); // run self-test implementations |
| 195 | + return 0; |
| 196 | +} |
0 commit comments