|
| 1 | +/** |
| 2 | + * @file |
| 3 | + * @brief API Functions related to 3D vector operations. |
| 4 | + * @author Krishna Vedala |
| 5 | + */ |
| 6 | + |
| 7 | +#include <stdio.h> |
| 8 | +#ifdef __arm__ // if compiling for ARM-Cortex processors |
| 9 | +#define LIBQUAT_ARM |
| 10 | +#include <arm_math.h> |
| 11 | +#else |
| 12 | +#include <math.h> |
| 13 | +#endif |
| 14 | +#include <assert.h> |
| 15 | + |
| 16 | +#include "geometry_datatypes.h" |
| 17 | + |
| 18 | +/** |
| 19 | + * @addtogroup vec_3d 3D Vector operations |
| 20 | + * @{ |
| 21 | + */ |
| 22 | + |
| 23 | +/** |
| 24 | + * Subtract one vector from another. @f[ |
| 25 | + * \vec{c}=\vec{a}-\vec{b}=\left(a_x-b_x\right)\hat{i}+ |
| 26 | + * \left(a_y-b_y\right)\hat{j}+\left(a_z-b_z\right)\hat{k}@f] |
| 27 | + * @param[in] a vector to subtract from |
| 28 | + * @param[in] b vector to subtract |
| 29 | + * @returns resultant vector |
| 30 | + */ |
| 31 | +vec_3d vector_sub(const vec_3d *a, const vec_3d *b) |
| 32 | +{ |
| 33 | + vec_3d out; |
| 34 | +#ifdef LIBQUAT_ARM |
| 35 | + arm_sub_f32((float *)a, (float *)b, (float *)&out); |
| 36 | +#else |
| 37 | + out.x = a->x - b->x; |
| 38 | + out.y = a->y - b->y; |
| 39 | + out.z = a->z - b->z; |
| 40 | +#endif |
| 41 | + |
| 42 | + return out; |
| 43 | +} |
| 44 | + |
| 45 | +/** |
| 46 | + * Add one vector to another. @f[ |
| 47 | + * \vec{c}=\vec{a}+\vec{b}=\left(a_x+b_x\right)\hat{i}+ |
| 48 | + * \left(a_y+b_y\right)\hat{j}+\left(a_z+b_z\right)\hat{k}@f] |
| 49 | + * @param[in] a vector to add to |
| 50 | + * @param[in] b vector to add |
| 51 | + * @returns resultant vector |
| 52 | + */ |
| 53 | +vec_3d vector_add(const vec_3d *a, const vec_3d *b) |
| 54 | +{ |
| 55 | + vec_3d out; |
| 56 | +#ifdef LIBQUAT_ARM |
| 57 | + arm_add_f32((float *)a, (float *)b, (float *)&out); |
| 58 | +#else |
| 59 | + out.x = a->x + b->x; |
| 60 | + out.y = a->y + b->y; |
| 61 | + out.z = a->z + b->z; |
| 62 | +#endif |
| 63 | + |
| 64 | + return out; |
| 65 | +} |
| 66 | + |
| 67 | +/** |
| 68 | + * Obtain the dot product of two 3D vectors. |
| 69 | + * @f[ |
| 70 | + * \vec{a}\cdot\vec{b}=a_xb_x + a_yb_y + a_zb_z |
| 71 | + * @f] |
| 72 | + * @param[in] a first vector |
| 73 | + * @param[in] b second vector |
| 74 | + * @returns resulting dot product |
| 75 | + */ |
| 76 | +float dot_prod(const vec_3d *a, const vec_3d *b) |
| 77 | +{ |
| 78 | + float dot; |
| 79 | +#ifdef LIBQUAT_ARM |
| 80 | + arm_dot_prod_f32((float *)a, (float *)b, &dot); |
| 81 | +#else |
| 82 | + dot = a->x * b->x; |
| 83 | + dot += a->y * b->y; |
| 84 | + dot += a->z * b->z; |
| 85 | +#endif |
| 86 | + |
| 87 | + return dot; |
| 88 | +} |
| 89 | + |
| 90 | +/** |
| 91 | + * Compute the vector product of two 3d vectors. |
| 92 | + * @f[\begin{align*} |
| 93 | + * \vec{a}\times\vec{b} &= \begin{vmatrix} |
| 94 | + * \hat{i} & \hat{j} & \hat{k}\\ |
| 95 | + * a_x & a_y & a_z\\ |
| 96 | + * b_x & b_y & b_z |
| 97 | + * \end{vmatrix}\\ |
| 98 | + * &= \left(a_yb_z-b_ya_z\right)\hat{i} - \left(a_xb_z-b_xa_z\right)\hat{j} |
| 99 | + * + \left(a_xb_y-b_xa_y\right)\hat{k} \end{align*} |
| 100 | + * @f] |
| 101 | + * @param[in] a first vector @f$\vec{a}@f$ |
| 102 | + * @param[in] b second vector @f$\vec{b}@f$ |
| 103 | + * @returns resultant vector @f$\vec{o}=\vec{a}\times\vec{b}@f$ |
| 104 | + */ |
| 105 | +vec_3d vector_prod(const vec_3d *a, const vec_3d *b) |
| 106 | +{ |
| 107 | + vec_3d out; // better this way to avoid copying results to input |
| 108 | + // vectors themselves |
| 109 | + out.x = a->y * b->z - a->z * b->y; |
| 110 | + out.y = -a->x * b->z + a->z * b->x; |
| 111 | + out.z = a->x * b->y - a->y * b->x; |
| 112 | + |
| 113 | + return out; |
| 114 | +} |
| 115 | + |
| 116 | +/** |
| 117 | + * Print formatted vector on stdout. |
| 118 | + * @param[in] a vector to print |
| 119 | + * @param[in] name name of the vector |
| 120 | + * @returns string representation of vector |
| 121 | + */ |
| 122 | +const char *print_vector(const vec_3d *a, const char *name) |
| 123 | +{ |
| 124 | + static char vec_str[100]; // static to ensure the string life extends the |
| 125 | + // life of function |
| 126 | + |
| 127 | + snprintf(vec_str, 99, "vec(%s) = (%.3g)i + (%.3g)j + (%.3g)k\n", name, a->x, |
| 128 | + a->y, a->z); |
| 129 | + return vec_str; |
| 130 | +} |
| 131 | + |
| 132 | +/** |
| 133 | + * Compute the norm a vector. |
| 134 | + * @f[\lVert\vec{a}\rVert = \sqrt{\vec{a}\cdot\vec{a}} @f] |
| 135 | + * @param[in] a input vector |
| 136 | + * @returns norm of the given vector |
| 137 | + */ |
| 138 | +float vector_norm(const vec_3d *a) |
| 139 | +{ |
| 140 | + float n = dot_prod(a, a); |
| 141 | +#ifdef LIBQUAT_ARM |
| 142 | + arm_sqrt_f32(*n, n); |
| 143 | +#else |
| 144 | + n = sqrtf(n); |
| 145 | +#endif |
| 146 | + |
| 147 | + return n; |
| 148 | +} |
| 149 | + |
| 150 | +/** |
| 151 | + * Obtain unit vector in the same direction as given vector. |
| 152 | + * @f[\hat{a}=\frac{\vec{a}}{\lVert\vec{a}\rVert}@f] |
| 153 | + * @param[in] a input vector |
| 154 | + * @returns n unit vector in the direction of @f$\vec{a}@f$ |
| 155 | + */ |
| 156 | +vec_3d unit_vec(const vec_3d *a) |
| 157 | +{ |
| 158 | + vec_3d n = {0}; |
| 159 | + |
| 160 | + float norm = vector_norm(a); |
| 161 | + if (fabsf(norm) < EPSILON) // detect possible divide by 0 |
| 162 | + return n; |
| 163 | + |
| 164 | + if (norm != 1.F) // perform division only if needed |
| 165 | + { |
| 166 | + n.x = a->x / norm; |
| 167 | + n.y = a->y / norm; |
| 168 | + n.z = a->z / norm; |
| 169 | + } |
| 170 | + return n; |
| 171 | +} |
| 172 | + |
| 173 | +/** |
| 174 | + * The cross product of vectors can be represented as a matrix |
| 175 | + * multiplication operation. This function obtains the `3x3` matrix |
| 176 | + * of the cross-product operator from the first vector. |
| 177 | + * @f[\begin{align*} |
| 178 | + * \left(\vec{a}\times\right)\vec{b} &= \tilde{A}_a\vec{b}\\ |
| 179 | + * \tilde{A}_a &= |
| 180 | + * \begin{bmatrix}0&-a_z&a_y\\a_z&0&-a_x\\-a_y&a_x&0\end{bmatrix} |
| 181 | + * \end{align*}@f] |
| 182 | + * @param[in] a input vector |
| 183 | + * @returns the `3x3` matrix for the cross product operator |
| 184 | + * @f$\left(\vec{a}\times\right)@f$ |
| 185 | + */ |
| 186 | +mat_3x3 get_cross_matrix(const vec_3d *a) |
| 187 | +{ |
| 188 | + mat_3x3 A = {0., -a->z, a->y, a->z, 0., -a->x, -a->y, a->x, 0.}; |
| 189 | + return A; |
| 190 | +} |
| 191 | + |
| 192 | +/** @} */ |
| 193 | + |
| 194 | +/** |
| 195 | + * @brief Testing function |
| 196 | + * @returns `void` |
| 197 | + */ |
| 198 | +static void test() |
| 199 | +{ |
| 200 | + vec_3d a = {1., 2., 3.}; |
| 201 | + vec_3d b = {1., 1., 1.}; |
| 202 | + float d; |
| 203 | + |
| 204 | + // printf("%s", print_vector(&a, "a")); |
| 205 | + // printf("%s", print_vector(&b, "b")); |
| 206 | + |
| 207 | + d = vector_norm(&a); |
| 208 | + // printf("|a| = %.4g\n", d); |
| 209 | + assert(fabs(d - 3.742) < 0.01); |
| 210 | + d = vector_norm(&b); |
| 211 | + // printf("|b| = %.4g\n", d); |
| 212 | + assert(fabs(d - 1.732) < 0.01); |
| 213 | + |
| 214 | + d = dot_prod(&a, &b); |
| 215 | + // printf("Dot product: %f\n", d); |
| 216 | + assert(fabs(d - 6.f) < 0.01); |
| 217 | + |
| 218 | + vec_3d c = vector_prod(&a, &b); |
| 219 | + // printf("Vector product "); |
| 220 | + // printf("%s", print_vector(&c, "c")); |
| 221 | + assert(fabs(c.x - (-1)) < 0.01); |
| 222 | + assert(fabs(c.y - (2)) < 0.01); |
| 223 | + assert(fabs(c.z - (-1)) < 0.01); |
| 224 | +} |
| 225 | + |
| 226 | +/** |
| 227 | + * @brief Main function |
| 228 | + * |
| 229 | + * @return 0 on exit |
| 230 | + */ |
| 231 | +int main(void) |
| 232 | +{ |
| 233 | + test(); |
| 234 | + |
| 235 | + return 0; |
| 236 | +} |
0 commit comments