|
| 1 | +/** |
| 2 | + * @file k_means_clustering.cpp |
| 3 | + * @brief K Means Clustering Algorithm implemented |
| 4 | + * @details |
| 5 | + * This file has K Means algorithm implemmented |
| 6 | + * It prints test output in eps format |
| 7 | + * |
| 8 | + * Note: |
| 9 | + * Though the code for clustering works for all the |
| 10 | + * 2D data points and can be extended for any size vector |
| 11 | + * by making the required changes, but note that |
| 12 | + * the output method i.e. printEPS is only good for |
| 13 | + * polar data points i.e. in a circle and both test |
| 14 | + * use the same. |
| 15 | + * @author [Lakhan Nad](https://github.com/Lakhan-Nad) |
| 16 | + */ |
| 17 | + |
| 18 | +#define _USE_MATH_DEFINES /* required for MS Visual C */ |
| 19 | +#include <float.h> /* DBL_MAX, DBL_MIN */ |
| 20 | +#include <math.h> /* PI, sin, cos */ |
| 21 | +#include <stdio.h> /* printf */ |
| 22 | +#include <stdlib.h> /* rand */ |
| 23 | +#include <string.h> /* memset */ |
| 24 | +#include <time.h> /* time */ |
| 25 | + |
| 26 | +/*! |
| 27 | + * @addtogroup machine_learning Machine Learning Algorithms |
| 28 | + * @{ |
| 29 | + * @addtogroup k_means K-Means Clustering Algorithm |
| 30 | + * @{ |
| 31 | + */ |
| 32 | + |
| 33 | +/*! @struct observation |
| 34 | + * a class to store points in 2d plane |
| 35 | + * the name observation is used to denote |
| 36 | + * a random point in plane |
| 37 | + */ |
| 38 | +typedef struct observation { |
| 39 | + double x; /**< abscissa of 2D data point */ |
| 40 | + double y; /**< ordinate of 2D data point */ |
| 41 | + int group; /**< the group no in which this observation would go */ |
| 42 | +} observation; |
| 43 | + |
| 44 | +/*! @struct cluster |
| 45 | + * this class stores the coordinates |
| 46 | + * of centroid of all the points |
| 47 | + * in that cluster it also |
| 48 | + * stores the count of observations |
| 49 | + * belonging to this cluster |
| 50 | + */ |
| 51 | +typedef struct cluster { |
| 52 | + double x; /**< abscissa centroid of this cluster */ |
| 53 | + double y; /**< ordinate of centroid of this cluster */ |
| 54 | + size_t count; /**< count of observations present in this cluster */ |
| 55 | +} cluster; |
| 56 | + |
| 57 | +/*! @fn calculateNearest |
| 58 | + * Returns the index of centroid nearest to |
| 59 | + * given observation |
| 60 | + * |
| 61 | + * @param o observation |
| 62 | + * @param clusters array of cluster having centroids coordinates |
| 63 | + * @param k size of clusters array |
| 64 | + * |
| 65 | + * @returns the index of nearest centroid for given observation |
| 66 | + */ |
| 67 | +int calculateNearst(observation* o, cluster clusters[], int k) { |
| 68 | + double minD = DBL_MAX; |
| 69 | + double dist = 0; |
| 70 | + int index = -1; |
| 71 | + int i = 0; |
| 72 | + for (; i < k; i++) { |
| 73 | + /* Calculate Squared Distance*/ |
| 74 | + dist = (clusters[i].x - o->x) * (clusters[i].x - o->x) + |
| 75 | + (clusters[i].y - o->y) * (clusters[i].y - o->y); |
| 76 | + if (dist < minD) { |
| 77 | + minD = dist; |
| 78 | + index = i; |
| 79 | + } |
| 80 | + } |
| 81 | + return index; |
| 82 | +} |
| 83 | + |
| 84 | +/*! @fn calculateCentroid |
| 85 | + * Calculate centoid and assign it to the cluster variable |
| 86 | + * |
| 87 | + * @param observations an array of observations whose centroid is calculated |
| 88 | + * @param size size of the observations array |
| 89 | + * @param centroid a reference to cluster object to store information of |
| 90 | + * centroid |
| 91 | + */ |
| 92 | +void calculateCentroid(observation observations[], size_t size, |
| 93 | + cluster* centroid) { |
| 94 | + size_t i = 0; |
| 95 | + centroid->x = 0; |
| 96 | + centroid->y = 0; |
| 97 | + centroid->count = size; |
| 98 | + for (; i < size; i++) { |
| 99 | + centroid->x += observations[i].x; |
| 100 | + centroid->y += observations[i].y; |
| 101 | + observations[i].group = 0; |
| 102 | + } |
| 103 | + centroid->x /= centroid->count; |
| 104 | + centroid->y /= centroid->count; |
| 105 | +} |
| 106 | + |
| 107 | +/*! @fn kMeans |
| 108 | + * --K Means Algorithm-- |
| 109 | + * 1. Assign each observation to one of k groups |
| 110 | + * creating a random initial clustering |
| 111 | + * 2. Find the centroid of observations for each |
| 112 | + * cluster to form new centroids |
| 113 | + * 3. Find the centroid which is nearest for each |
| 114 | + * observation among the calculated centroids |
| 115 | + * 4. Assign the observation to its nearest centroid |
| 116 | + * to create a new clustering. |
| 117 | + * 5. Repeat step 2,3,4 until there is no change |
| 118 | + * the current clustering and is same as last |
| 119 | + * clustering. |
| 120 | + * @param observations an array of observations to cluster |
| 121 | + * @param size size of observations array |
| 122 | + * @param k no of clusters to be made |
| 123 | + * |
| 124 | + * @returns pointer to cluster object |
| 125 | + */ |
| 126 | +cluster* kMeans(observation observations[], size_t size, int k) { |
| 127 | + cluster* clusters = NULL; |
| 128 | + if (k <= 1) { |
| 129 | + /* |
| 130 | + If we have to cluster them only in one group |
| 131 | + then calculate centroid of observations and |
| 132 | + that will be a ingle cluster |
| 133 | + */ |
| 134 | + clusters = (cluster*)malloc(sizeof(cluster)); |
| 135 | + memset(clusters, 0, sizeof(cluster)); |
| 136 | + calculateCentroid(observations, size, clusters); |
| 137 | + } else if (k < size) { |
| 138 | + clusters = malloc(sizeof(cluster) * k); |
| 139 | + memset(clusters, 0, k * sizeof(cluster)); |
| 140 | + /* STEP 1 */ |
| 141 | + for (size_t j = 0; j < size; j++) { |
| 142 | + observations[j].group = rand() % k; |
| 143 | + } |
| 144 | + size_t changed = 0; |
| 145 | + size_t minAcceptedError = |
| 146 | + size / 10000; // Do until 99.99 percent points are in correct cluster |
| 147 | + int t = 0; |
| 148 | + do { |
| 149 | + /* Initialize clusters */ |
| 150 | + for (int i = 0; i < k; i++) { |
| 151 | + clusters[i].x = 0; |
| 152 | + clusters[i].y = 0; |
| 153 | + clusters[i].count = 0; |
| 154 | + } |
| 155 | + /* STEP 2*/ |
| 156 | + for (size_t j = 0; j < size; j++) { |
| 157 | + t = observations[j].group; |
| 158 | + clusters[t].x += observations[j].x; |
| 159 | + clusters[t].y += observations[j].y; |
| 160 | + clusters[t].count++; |
| 161 | + } |
| 162 | + for (int i = 0; i < k; i++) { |
| 163 | + clusters[i].x /= clusters[i].count; |
| 164 | + clusters[i].y /= clusters[i].count; |
| 165 | + } |
| 166 | + /* STEP 3 and 4 */ |
| 167 | + changed = 0; // this variable stores change in clustering |
| 168 | + for (size_t j = 0; j < size; j++) { |
| 169 | + t = calculateNearst(observations + j, clusters, k); |
| 170 | + if (t != observations[j].group) { |
| 171 | + changed++; |
| 172 | + observations[j].group = t; |
| 173 | + } |
| 174 | + } |
| 175 | + } while (changed > minAcceptedError); // Keep on grouping until we have |
| 176 | + // got almost best clustering |
| 177 | + } else { |
| 178 | + /* If no of clusters is more than observations |
| 179 | + each observation can be its own cluster |
| 180 | + */ |
| 181 | + clusters = (cluster*)malloc(sizeof(cluster) * k); |
| 182 | + memset(clusters, 0, k * sizeof(cluster)); |
| 183 | + for (int j = 0; j < size; j++) { |
| 184 | + clusters[j].x = observations[j].x; |
| 185 | + clusters[j].y = observations[j].y; |
| 186 | + clusters[j].count = 1; |
| 187 | + observations[j].group = j; |
| 188 | + } |
| 189 | + } |
| 190 | + return clusters; |
| 191 | +} |
| 192 | + |
| 193 | +/** |
| 194 | + * @} |
| 195 | + * @} |
| 196 | + */ |
| 197 | + |
| 198 | +/*! @fn printEPS |
| 199 | + * A function to print observations and clusters |
| 200 | + * The code is taken from |
| 201 | + * @link http://rosettacode.org/wiki/K-means%2B%2B_clustering |
| 202 | + * its C implementation |
| 203 | + * Even the K Means code is also inspired from it |
| 204 | + * |
| 205 | + * Note: To print in a file use pipeline operator ( ./a.out > image.eps ) |
| 206 | + * |
| 207 | + * @param observations observations array |
| 208 | + * @param len size of observation array |
| 209 | + * @param cent clusters centroid's array |
| 210 | + * @param k size of cent array |
| 211 | + */ |
| 212 | +void printEPS(observation pts[], size_t len, cluster cent[], int k) { |
| 213 | + int W = 400, H = 400; |
| 214 | + double min_x = DBL_MAX, max_x = DBL_MIN, min_y = DBL_MAX, max_y = DBL_MIN; |
| 215 | + double scale = 0, cx = 0, cy = 0; |
| 216 | + double* colors = (double*)malloc(sizeof(double) * (k * 3)); |
| 217 | + int i; |
| 218 | + size_t j; |
| 219 | + double kd = k * 1.0; |
| 220 | + for (i = 0; i < k; i++) { |
| 221 | + *(colors + 3 * i) = (3 * (i + 1) % k) / kd; |
| 222 | + *(colors + 3 * i + 1) = (7 * i % k) / kd; |
| 223 | + *(colors + 3 * i + 2) = (9 * i % k) / kd; |
| 224 | + } |
| 225 | + |
| 226 | + for (j = 0; j < len; j++) { |
| 227 | + if (max_x < pts[j].x) max_x = pts[j].x; |
| 228 | + if (min_x > pts[j].x) min_x = pts[j].x; |
| 229 | + if (max_y < pts[j].y) max_y = pts[j].y; |
| 230 | + if (min_y > pts[j].y) min_y = pts[j].y; |
| 231 | + } |
| 232 | + scale = W / (max_x - min_x); |
| 233 | + if (scale > (H / (max_y - min_y))) { |
| 234 | + scale = H / (max_y - min_y); |
| 235 | + }; |
| 236 | + cx = (max_x + min_x) / 2; |
| 237 | + cy = (max_y + min_y) / 2; |
| 238 | + |
| 239 | + printf("%%!PS-Adobe-3.0 EPSF-3.0\n%%%%BoundingBox: -5 -5 %d %d\n", W + 10, |
| 240 | + H + 10); |
| 241 | + printf( |
| 242 | + "/l {rlineto} def /m {rmoveto} def\n" |
| 243 | + "/c { .25 sub exch .25 sub exch .5 0 360 arc fill } def\n" |
| 244 | + "/s { moveto -2 0 m 2 2 l 2 -2 l -2 -2 l closepath " |
| 245 | + " gsave 1 setgray fill grestore gsave 3 setlinewidth" |
| 246 | + " 1 setgray stroke grestore 0 setgray stroke }def\n"); |
| 247 | + for (int i = 0; i < k; i++) { |
| 248 | + printf("%g %g %g setrgbcolor\n", *(colors + 3 * i), *(colors + 3 * i + 1), |
| 249 | + *(colors + 3 * i + 2)); |
| 250 | + for (j = 0; j < len; j++) { |
| 251 | + if (pts[j].group != i) continue; |
| 252 | + printf("%.3f %.3f c\n", (pts[j].x - cx) * scale + W / 2, |
| 253 | + (pts[j].y - cy) * scale + H / 2); |
| 254 | + } |
| 255 | + printf("\n0 setgray %g %g s\n", (cent[i].x - cx) * scale + W / 2, |
| 256 | + (cent[i].y - cy) * scale + H / 2); |
| 257 | + } |
| 258 | + printf("\n%%%%EOF"); |
| 259 | + |
| 260 | + // free accquired memory |
| 261 | + free(colors); |
| 262 | +} |
| 263 | + |
| 264 | +/*! @fn test |
| 265 | + * A function to test the kMeans function |
| 266 | + * Generates 100000 points in a circle of |
| 267 | + * radius 20.0 with center at (0,0) |
| 268 | + * and cluster them into 5 clusters |
| 269 | + * |
| 270 | + * <img alt="Output for 100000 points divided in 5 clusters" src= |
| 271 | + * "https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/machine_learning/k_means_clustering/kMeansTest1.png" |
| 272 | + * width="400px" heiggt="400px"> |
| 273 | + */ |
| 274 | +static void test() { |
| 275 | + size_t size = 100000L; |
| 276 | + observation* observations = (observation*)malloc(sizeof(observation) * size); |
| 277 | + double maxRadius = 20.00; |
| 278 | + double radius = 0; |
| 279 | + double ang = 0; |
| 280 | + size_t i = 0; |
| 281 | + for (; i < size; i++) { |
| 282 | + radius = maxRadius * ((double)rand() / RAND_MAX); |
| 283 | + ang = 2 * M_PI * ((double)rand() / RAND_MAX); |
| 284 | + observations[i].x = radius * cos(ang); |
| 285 | + observations[i].y = radius * sin(ang); |
| 286 | + } |
| 287 | + int k = 5; // No of clusters |
| 288 | + cluster* clusters = kMeans(observations, size, k); |
| 289 | + printEPS(observations, size, clusters, k); |
| 290 | + // Free the accquired memory |
| 291 | + free(observations); |
| 292 | + free(clusters); |
| 293 | +} |
| 294 | + |
| 295 | +/*! @fn test2 |
| 296 | + * A function to test the kMeans function |
| 297 | + * Generates 1000000 points in a circle of |
| 298 | + * radius 20.0 with center at (0,0) |
| 299 | + * and cluster them into 11 clusters |
| 300 | + * |
| 301 | + * <img alt="Output for 1000000 points divided in 11 clusters" src= |
| 302 | + * "https://raw.githubusercontent.com/TheAlgorithms/C/docs/images/machine_learning/k_means_clustering/kMeansTest2.png" |
| 303 | + * width="400px" heiggt="400px"> |
| 304 | + */ |
| 305 | +void test2() { |
| 306 | + size_t size = 1000000L; |
| 307 | + observation* observations = (observation*)malloc(sizeof(observation) * size); |
| 308 | + double maxRadius = 20.00; |
| 309 | + double radius = 0; |
| 310 | + double ang = 0; |
| 311 | + size_t i = 0; |
| 312 | + for (; i < size; i++) { |
| 313 | + radius = maxRadius * ((double)rand() / RAND_MAX); |
| 314 | + ang = 2 * M_PI * ((double)rand() / RAND_MAX); |
| 315 | + observations[i].x = radius * cos(ang); |
| 316 | + observations[i].y = radius * sin(ang); |
| 317 | + } |
| 318 | + int k = 11; // No of clusters |
| 319 | + cluster* clusters = kMeans(observations, size, k); |
| 320 | + printEPS(observations, size, clusters, k); |
| 321 | + // Free the accquired memory |
| 322 | + free(observations); |
| 323 | + free(clusters); |
| 324 | +} |
| 325 | + |
| 326 | +/*! @fn main |
| 327 | + * This function calls the test |
| 328 | + * function |
| 329 | + */ |
| 330 | +int main() { |
| 331 | + srand(time(NULL)); |
| 332 | + test(); |
| 333 | + /* test2(); */ |
| 334 | + return 0; |
| 335 | +} |
0 commit comments