|
| 1 | +package main |
| 2 | + |
| 3 | +import ( |
| 4 | + "fmt" |
| 5 | + "math/rand" |
| 6 | +) |
| 7 | +func main(){ |
| 8 | + bit:=30 |
| 9 | + /* |
| 10 | + p and g are pre-agreed constants |
| 11 | + that can be communicated over an insecure channel |
| 12 | + p should ideally be a large prime number but any integer works |
| 13 | + g should be a small integer, 2,3 works fine |
| 14 | +
|
| 15 | + PS: Note that the secret keys are never send over |
| 16 | + the network |
| 17 | + */ |
| 18 | + |
| 19 | + p:=2+rand.Intn(1<<bit) |
| 20 | + g:=2+rand.Intn(5) |
| 21 | + |
| 22 | + //Both parties choose a secret key |
| 23 | + |
| 24 | + AliceSecret := 1 + rand.Intn(1<<bit) |
| 25 | + BobSecret := 1 + rand.Intn(1<<bit) |
| 26 | + |
| 27 | + fmt.Printf("Alice's secret key is: %v",AliceSecret) |
| 28 | + fmt.Printf("Bob's secret key is: %v",BobSecret) |
| 29 | + |
| 30 | + //Both parties send ((g^secret_key)%p) |
| 31 | + //It's not possible to determine the secretkey from the value sent |
| 32 | + |
| 33 | + AliceSends :=modularExponentiation(g,AliceSecret,p) |
| 34 | + BobSends :=modularExponentiation(g,BobSecret,p) |
| 35 | + |
| 36 | + fmt.Printf("Alice sends to Bob: %v",AliceSends) |
| 37 | + fmt.Printf("Bob sends to Alice: %v",BobSends) |
| 38 | + |
| 39 | + //Both parties calculate the shared secret key from the value send |
| 40 | + //(value_sent^secret_key)%p |
| 41 | + //Both calculations end up with same value despite the different inputs |
| 42 | + AliceComputes :=modularExponentiation(BobSends,AliceSecret,p) |
| 43 | + BobComputes := modularExponentiation(AliceSends,BobSecret,p) |
| 44 | + |
| 45 | + fmt.Printf("Alice Computes the shared secret key as: %v",AliceComputes) |
| 46 | + fmt.Printf("Bob Computes the shared secret key as: %v",BobComputes) |
| 47 | + |
| 48 | + // simply confirms that the values are equal |
| 49 | + if AliceComputes == BobComputes{ |
| 50 | + sharedKey:=AliceComputes |
| 51 | + fmt.Println(" Voila, shared key is",sharedKey) |
| 52 | + } |
| 53 | + |
| 54 | + |
| 55 | + |
| 56 | + |
| 57 | +} |
| 58 | +func modularExponentiation(b int, e int, mod int)int{ |
| 59 | + //runs in O(log(n)) where n = e |
| 60 | + //uses exponentiation by squaring to speed up the process |
| 61 | + if mod == 1{ |
| 62 | + return 0 |
| 63 | + } |
| 64 | + r:=1 |
| 65 | + b = b % mod |
| 66 | + for ;e>0;{ |
| 67 | + if e%2==1{ |
| 68 | + r=(r*b)%mod |
| 69 | + } |
| 70 | + e =e>>1 |
| 71 | + b = (b*b)%mod |
| 72 | + } |
| 73 | + return r |
| 74 | +} |
0 commit comments