|
| 1 | +package set |
| 2 | + |
| 3 | +// New gives new set. |
| 4 | +func New(items ...interface{}) Set { |
| 5 | + st := set{ |
| 6 | + elements: make(map[interface{}]bool), |
| 7 | + } |
| 8 | + for _, item := range items { |
| 9 | + st.Add(item) |
| 10 | + } |
| 11 | + return &st |
| 12 | +} |
| 13 | + |
| 14 | +// Set is an interface of possible methods on 'set'. |
| 15 | +type Set interface { |
| 16 | + // Add: adds new element to the set |
| 17 | + Add(item interface{}) |
| 18 | + // Delete: delets the passed element from the set if present |
| 19 | + Delete(item interface{}) |
| 20 | + // Len: gives the length of the set (total no. of elements in set) |
| 21 | + Len() int |
| 22 | + // GetItems: gives the array( []interface{} ) of elements of the set. |
| 23 | + GetItems() []interface{} |
| 24 | + // In: checks whether item is present in set or not. |
| 25 | + In(item interface{}) bool |
| 26 | + // IsSubsetOf: checks wether set is subset of set2 or not. |
| 27 | + IsSubsetOf(set2 Set) bool |
| 28 | + // IsSupersetOf: checks wether set is superset of set2 or not. |
| 29 | + IsSupersetOf(set2 Set) bool |
| 30 | + // Union: gives new union set of both sets. |
| 31 | + // ex: [1,2,3] union [3,4,5] -> [1,2,3,4,5] |
| 32 | + Union(set2 Set) Set |
| 33 | + // Intersection: gives new intersection set of both sets. |
| 34 | + // ex: [1,2,3] Intersection [3,4,5] -> [3] |
| 35 | + Intersection(set2 Set) Set |
| 36 | + // Difference: gives new difference set of both sets. |
| 37 | + // ex: [1,2,3] Difference [3,4,5] -> [1,2] |
| 38 | + Difference(set2 Set) Set |
| 39 | + // SymmetricDifference: gives new symmetric difference set of both sets. |
| 40 | + // ex: [1,2,3] SymmetricDifference [3,4,5] -> [1,2,4,5] |
| 41 | + SymmetricDifference(set2 Set) Set |
| 42 | +} |
| 43 | + |
| 44 | +type set struct { |
| 45 | + elements map[interface{}]bool |
| 46 | +} |
| 47 | + |
| 48 | +func (st *set) Add(value interface{}) { |
| 49 | + st.elements[value] = true |
| 50 | +} |
| 51 | + |
| 52 | +func (st *set) Delete(value interface{}) { |
| 53 | + delete(st.elements, value) |
| 54 | +} |
| 55 | + |
| 56 | +func (st *set) GetItems() []interface{} { |
| 57 | + keys := make([]interface{}, 0, len(st.elements)) |
| 58 | + for k := range st.elements { |
| 59 | + keys = append(keys, k) |
| 60 | + } |
| 61 | + return keys |
| 62 | +} |
| 63 | + |
| 64 | +func (st *set) Len() int { |
| 65 | + return len(st.elements) |
| 66 | +} |
| 67 | + |
| 68 | +func (st *set) In(value interface{}) bool { |
| 69 | + if _, in := st.elements[value]; in { |
| 70 | + return true |
| 71 | + } |
| 72 | + return false |
| 73 | +} |
| 74 | + |
| 75 | +func (st *set) IsSubsetOf(superSet Set) bool { |
| 76 | + if st.Len() > superSet.Len() { |
| 77 | + return false |
| 78 | + } |
| 79 | + |
| 80 | + for _, item := range st.GetItems() { |
| 81 | + if !superSet.In(item) { |
| 82 | + return false |
| 83 | + } |
| 84 | + } |
| 85 | + return true |
| 86 | +} |
| 87 | + |
| 88 | +func (st *set) IsSupersetOf(subSet Set) bool { |
| 89 | + return subSet.IsSubsetOf(st) |
| 90 | +} |
| 91 | + |
| 92 | +func (st *set) Union(st2 Set) Set { |
| 93 | + unionSet := New() |
| 94 | + for _, item := range st.GetItems() { |
| 95 | + unionSet.Add(item) |
| 96 | + } |
| 97 | + for _, item := range st2.GetItems() { |
| 98 | + unionSet.Add(item) |
| 99 | + } |
| 100 | + return unionSet |
| 101 | +} |
| 102 | + |
| 103 | +func (st *set) Intersection(st2 Set) Set { |
| 104 | + intersectionSet := New() |
| 105 | + var minSet, maxSet Set |
| 106 | + if st.Len() > st2.Len() { |
| 107 | + minSet = st2 |
| 108 | + maxSet = st |
| 109 | + } else { |
| 110 | + minSet = st |
| 111 | + maxSet = st2 |
| 112 | + } |
| 113 | + for _, item := range minSet.GetItems() { |
| 114 | + if maxSet.In(item) { |
| 115 | + intersectionSet.Add(item) |
| 116 | + } |
| 117 | + } |
| 118 | + return intersectionSet |
| 119 | +} |
| 120 | + |
| 121 | +func (st *set) Difference(st2 Set) Set { |
| 122 | + differenceSet := New() |
| 123 | + for _, item := range st.GetItems() { |
| 124 | + if !st2.In(item) { |
| 125 | + differenceSet.Add(item) |
| 126 | + } |
| 127 | + } |
| 128 | + return differenceSet |
| 129 | +} |
| 130 | + |
| 131 | +func (st *set) SymmetricDifference(st2 Set) Set { |
| 132 | + symmetricDifferenceSet := New() |
| 133 | + dropSet := New() |
| 134 | + for _, item := range st.GetItems() { |
| 135 | + if st2.In(item) { |
| 136 | + dropSet.Add(item) |
| 137 | + } else { |
| 138 | + symmetricDifferenceSet.Add(item) |
| 139 | + } |
| 140 | + } |
| 141 | + for _, item := range st2.GetItems() { |
| 142 | + if !dropSet.In(item) { |
| 143 | + symmetricDifferenceSet.Add(item) |
| 144 | + } |
| 145 | + } |
| 146 | + return symmetricDifferenceSet |
| 147 | +} |
0 commit comments