|
| 1 | +package main |
| 2 | + |
| 3 | +import ( |
| 4 | + "errors" |
| 5 | + "fmt" |
| 6 | + "math/rand" |
| 7 | + "os" |
| 8 | + "sort" |
| 9 | + "strconv" |
| 10 | + "time" |
| 11 | + "unicode/utf8" |
| 12 | +) |
| 13 | + |
| 14 | +type populationItem struct { |
| 15 | + Key string |
| 16 | + Value float64 |
| 17 | +} |
| 18 | + |
| 19 | +func main() { |
| 20 | + // Define a random seed |
| 21 | + rand.Seed(time.Now().UnixNano()) |
| 22 | + |
| 23 | + // Define parameters |
| 24 | + sentence := string("This is a genetic algorithm to evaluate, combine, evolve mutate a string!") |
| 25 | + charmap := []rune(" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\") |
| 26 | + populationNum := 200 |
| 27 | + selectionNum := 50 |
| 28 | + mutationProb := .1 |
| 29 | + |
| 30 | + // Verify the presence of all char in sentence |
| 31 | + for position, r := range []rune(sentence) { |
| 32 | + find := func() bool { |
| 33 | + for _, n := range charmap { |
| 34 | + if n == r { |
| 35 | + return true |
| 36 | + } |
| 37 | + } |
| 38 | + return false |
| 39 | + } |
| 40 | + if !find() { |
| 41 | + fmt.Println(errors.New("Character not aviable in charmap"), position, "\"", string(r), "\"") |
| 42 | + os.Exit(1) |
| 43 | + } |
| 44 | + } |
| 45 | + |
| 46 | + // Generate random population |
| 47 | + pop := make([]populationItem, populationNum, populationNum) |
| 48 | + for i := 0; i < populationNum; i++ { |
| 49 | + key := "" |
| 50 | + for x := 0; x < utf8.RuneCountInString(sentence); x++ { |
| 51 | + choice := rand.Intn(len(charmap)) |
| 52 | + key += string(charmap[choice]) |
| 53 | + } |
| 54 | + pop[i] = populationItem{key, 0} |
| 55 | + } |
| 56 | + |
| 57 | + for gen, generatedPop := 1, 0; ; gen++ { |
| 58 | + generatedPop += len(pop) |
| 59 | + |
| 60 | + // Random population created now it's time to evaluate |
| 61 | + for i, item := range pop { |
| 62 | + itemKey, sentenceRune := []rune(item.Key), []rune(sentence) |
| 63 | + for x := 0; x < len(sentence); x++ { |
| 64 | + if itemKey[x] == sentenceRune[x] { |
| 65 | + pop[i].Value++ |
| 66 | + } |
| 67 | + } |
| 68 | + pop[i].Value = pop[i].Value / float64(len(sentenceRune)) |
| 69 | + } |
| 70 | + // Check if there is a right evolution |
| 71 | + sort.SliceStable(pop, func(i, j int) bool { return pop[i].Value > pop[j].Value }) |
| 72 | + if pop[0].Key == sentence { |
| 73 | + fmt.Println("Generation:", strconv.Itoa(gen), "Analyzed:", generatedPop, "Best:", pop[0]) |
| 74 | + break |
| 75 | + } |
| 76 | + // Print the best result |
| 77 | + if gen%1000 == 0 { |
| 78 | + fmt.Println("Generation:", strconv.Itoa(gen), "Analyzed:", generatedPop, "Best:", pop[0]) |
| 79 | + } |
| 80 | + // Combine, Evolve and Mutate |
| 81 | + var popChildren []populationItem |
| 82 | + for i := 0; i < int(selectionNum); i++ { |
| 83 | + parent1 := pop[i] |
| 84 | + parent2 := pop[i+1] |
| 85 | + split := rand.Intn(utf8.RuneCountInString(sentence)) |
| 86 | + |
| 87 | + // Save Children 1 |
| 88 | + child := append([]rune(parent1.Key)[:split], []rune(parent2.Key)[split:]...) |
| 89 | + if rand.Float64() > mutationProb { |
| 90 | + child[rand.Intn(len(child))] = charmap[rand.Intn(len(charmap))] |
| 91 | + } |
| 92 | + popChildren = append(popChildren, populationItem{string(child), 0}) |
| 93 | + |
| 94 | + // Save Children 2 |
| 95 | + child = append([]rune(parent2.Key)[:split], []rune(parent1.Key)[split:]...) |
| 96 | + if rand.Float64() > mutationProb { |
| 97 | + child[rand.Intn(len(child))] = charmap[rand.Intn(len(charmap))] |
| 98 | + } |
| 99 | + popChildren = append(popChildren, populationItem{string(child), 0}) |
| 100 | + } |
| 101 | + pop = popChildren |
| 102 | + } |
| 103 | +} |
0 commit comments