|
| 1 | +package com.thealgorithms.graph; |
| 2 | + |
| 3 | +import java.util.ArrayList; |
| 4 | +import java.util.Arrays; |
| 5 | +import java.util.List; |
| 6 | + |
| 7 | +/** |
| 8 | + * Implementation of the Bellman-Ford algorithm for finding shortest paths from a single source |
| 9 | + * vertex to all other vertices in a weighted directed graph. Unlike Dijkstra's algorithm, |
| 10 | + * Bellman-Ford can handle graphs with negative weight edges and can detect negative weight cycles. |
| 11 | + * |
| 12 | + * <p>Time Complexity: O(V * E) where V is the number of vertices and E is the number of edges |
| 13 | + * Space Complexity: O(V) |
| 14 | + * |
| 15 | + * <p>Algorithm Steps: |
| 16 | + * 1. Initialize distances from source to all vertices as infinite and distance to source as 0 |
| 17 | + * 2. Relax all edges V-1 times (where V is the number of vertices) |
| 18 | + * 3. Check for negative weight cycles by attempting one more relaxation |
| 19 | + * |
| 20 | + * @author vardhan30016 |
| 21 | + * @see <a href="https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm">Bellman-Ford Algorithm</a> |
| 22 | + */ |
| 23 | +public final class BellmanFord { |
| 24 | + |
| 25 | + private BellmanFord() { |
| 26 | + throw new UnsupportedOperationException("Utility class"); |
| 27 | + } |
| 28 | + |
| 29 | + /** |
| 30 | + * Represents a weighted edge in the graph. |
| 31 | + */ |
| 32 | + public static class Edge { |
| 33 | + private final int source; |
| 34 | + private final int destination; |
| 35 | + private final int weight; |
| 36 | + |
| 37 | + /** |
| 38 | + * Creates a new edge. |
| 39 | + * |
| 40 | + * @param source the source vertex |
| 41 | + * @param destination the destination vertex |
| 42 | + * @param weight the weight of the edge |
| 43 | + */ |
| 44 | + public Edge(int source, int destination, int weight) { |
| 45 | + this.source = source; |
| 46 | + this.destination = destination; |
| 47 | + this.weight = weight; |
| 48 | + } |
| 49 | + |
| 50 | + public int getSource() { |
| 51 | + return source; |
| 52 | + } |
| 53 | + |
| 54 | + public int getDestination() { |
| 55 | + return destination; |
| 56 | + } |
| 57 | + |
| 58 | + public int getWeight() { |
| 59 | + return weight; |
| 60 | + } |
| 61 | + } |
| 62 | + |
| 63 | + /** |
| 64 | + * Represents the result of the Bellman-Ford algorithm. |
| 65 | + */ |
| 66 | + public static class Result { |
| 67 | + private final int[] distances; |
| 68 | + private final int[] predecessors; |
| 69 | + private final boolean hasNegativeCycle; |
| 70 | + |
| 71 | + /** |
| 72 | + * Creates a new result. |
| 73 | + * |
| 74 | + * @param distances array of shortest distances from source to each vertex |
| 75 | + * @param predecessors array of predecessor vertices in shortest paths |
| 76 | + * @param hasNegativeCycle true if the graph contains a negative weight cycle |
| 77 | + */ |
| 78 | + public Result(int[] distances, int[] predecessors, boolean hasNegativeCycle) { |
| 79 | + this.distances = Arrays.copyOf(distances, distances.length); |
| 80 | + this.predecessors = Arrays.copyOf(predecessors, predecessors.length); |
| 81 | + this.hasNegativeCycle = hasNegativeCycle; |
| 82 | + } |
| 83 | + |
| 84 | + /** |
| 85 | + * Gets the shortest distance to a vertex. |
| 86 | + * |
| 87 | + * @param vertex the target vertex |
| 88 | + * @return the shortest distance from source to the vertex, or Integer.MAX_VALUE if unreachable |
| 89 | + */ |
| 90 | + public int getDistance(int vertex) { |
| 91 | + return distances[vertex]; |
| 92 | + } |
| 93 | + |
| 94 | + /** |
| 95 | + * Gets all distances. |
| 96 | + * |
| 97 | + * @return array of distances from source to all vertices |
| 98 | + */ |
| 99 | + public int[] getDistances() { |
| 100 | + return Arrays.copyOf(distances, distances.length); |
| 101 | + } |
| 102 | + |
| 103 | + /** |
| 104 | + * Gets the shortest path to a vertex. |
| 105 | + * |
| 106 | + * @param vertex the target vertex |
| 107 | + * @return list of vertices in the shortest path from source to target |
| 108 | + * @throws IllegalStateException if the graph contains a negative cycle |
| 109 | + * @throws IllegalArgumentException if the vertex is unreachable |
| 110 | + */ |
| 111 | + public List<Integer> getPath(int vertex) { |
| 112 | + if (hasNegativeCycle) { |
| 113 | + throw new IllegalStateException("Graph contains a negative weight cycle"); |
| 114 | + } |
| 115 | + if (distances[vertex] == Integer.MAX_VALUE) { |
| 116 | + throw new IllegalArgumentException("Vertex " + vertex + " is unreachable from source"); |
| 117 | + } |
| 118 | + |
| 119 | + List<Integer> path = new ArrayList<>(); |
| 120 | + for (int v = vertex; v != -1; v = predecessors[v]) { |
| 121 | + path.add(0, v); |
| 122 | + } |
| 123 | + return path; |
| 124 | + } |
| 125 | + |
| 126 | + /** |
| 127 | + * Checks if the graph contains a negative weight cycle. |
| 128 | + * |
| 129 | + * @return true if a negative cycle exists, false otherwise |
| 130 | + */ |
| 131 | + public boolean hasNegativeCycle() { |
| 132 | + return hasNegativeCycle; |
| 133 | + } |
| 134 | + } |
| 135 | + |
| 136 | + /** |
| 137 | + * Finds shortest paths from a source vertex to all other vertices using the Bellman-Ford algorithm. |
| 138 | + * |
| 139 | + * @param vertices the number of vertices in the graph |
| 140 | + * @param edges list of edges in the graph |
| 141 | + * @param source the source vertex (0-indexed) |
| 142 | + * @return Result object containing distances, paths, and negative cycle information |
| 143 | + * @throws IllegalArgumentException if vertices is non-positive or source is invalid |
| 144 | + */ |
| 145 | + public static Result findShortestPaths(int vertices, List<Edge> edges, int source) { |
| 146 | + if (vertices <= 0) { |
| 147 | + throw new IllegalArgumentException("Number of vertices must be positive"); |
| 148 | + } |
| 149 | + if (source < 0 || source >= vertices) { |
| 150 | + throw new IllegalArgumentException("Source vertex is out of bounds"); |
| 151 | + } |
| 152 | + |
| 153 | + // Step 1: Initialize distances and predecessors |
| 154 | + int[] distances = new int[vertices]; |
| 155 | + int[] predecessors = new int[vertices]; |
| 156 | + Arrays.fill(distances, Integer.MAX_VALUE); |
| 157 | + Arrays.fill(predecessors, -1); |
| 158 | + distances[source] = 0; |
| 159 | + |
| 160 | + // Step 2: Relax all edges V-1 times |
| 161 | + for (int i = 0; i < vertices - 1; i++) { |
| 162 | + boolean updated = false; |
| 163 | + for (Edge edge : edges) { |
| 164 | + if (distances[edge.getSource()] != Integer.MAX_VALUE) { |
| 165 | + int newDistance = distances[edge.getSource()] + edge.getWeight(); |
| 166 | + if (newDistance < distances[edge.getDestination()]) { |
| 167 | + distances[edge.getDestination()] = newDistance; |
| 168 | + predecessors[edge.getDestination()] = edge.getSource(); |
| 169 | + updated = true; |
| 170 | + } |
| 171 | + } |
| 172 | + } |
| 173 | + // Early termination optimization: if no updates in this iteration, we're done |
| 174 | + if (!updated) { |
| 175 | + break; |
| 176 | + } |
| 177 | + } |
| 178 | + |
| 179 | + // Step 3: Check for negative weight cycles |
| 180 | + boolean hasNegativeCycle = false; |
| 181 | + for (Edge edge : edges) { |
| 182 | + if (distances[edge.getSource()] != Integer.MAX_VALUE) { |
| 183 | + int newDistance = distances[edge.getSource()] + edge.getWeight(); |
| 184 | + if (newDistance < distances[edge.getDestination()]) { |
| 185 | + hasNegativeCycle = true; |
| 186 | + break; |
| 187 | + } |
| 188 | + } |
| 189 | + } |
| 190 | + |
| 191 | + return new Result(distances, predecessors, hasNegativeCycle); |
| 192 | + } |
| 193 | +} |
0 commit comments