|
| 1 | +package com.thealgorithms.maths.Prime; |
| 2 | + |
| 3 | +import java.math.BigInteger; |
| 4 | +import java.security.SecureRandom; |
| 5 | + |
| 6 | +/** |
| 7 | + * The {@code EulerPseudoprime} class implements the Euler primality test. |
| 8 | + * |
| 9 | + * It is based on Euler’s criterion: |
| 10 | + * For an odd prime number {@code n} and any integer {@code a} coprime to {@code n}: |
| 11 | + * a^((n-1)/2) ≡ (a/n) (mod n) |
| 12 | + * where (a/n) is the Jacobi symbol. |
| 13 | + * |
| 14 | + * This algorithm is a stronger probabilistic test than Fermat’s test. |
| 15 | + * It may still incorrectly identify a composite as “probably prime” (Euler pseudoprime), |
| 16 | + * but such cases are rare. |
| 17 | + */ |
| 18 | +public class EulerPseudoprime { |
| 19 | + |
| 20 | + private EulerPseudoprime() { |
| 21 | + } |
| 22 | + |
| 23 | + private static final SecureRandom random = new SecureRandom(); |
| 24 | + |
| 25 | + /** |
| 26 | + * Performs the Euler primality test for a given number. |
| 27 | + * |
| 28 | + * @param n number to test (must be > 2 and odd) |
| 29 | + * @param trials number of random bases to test |
| 30 | + * @return {@code true} if {@code n} passes all Euler tests (probably prime), |
| 31 | + * {@code false} if composite. |
| 32 | + */ |
| 33 | + public static boolean isProbablePrime(BigInteger n, int trials) { |
| 34 | + if (n.compareTo(BigInteger.TWO) < 0) { |
| 35 | + return false; |
| 36 | + } |
| 37 | + if (n.equals(BigInteger.TWO) || n.equals(BigInteger.valueOf(3))) { |
| 38 | + return true; |
| 39 | + } |
| 40 | + if (n.mod(BigInteger.TWO).equals(BigInteger.ZERO)) { |
| 41 | + return false; |
| 42 | + } |
| 43 | + |
| 44 | + for (int i = 0; i < trials; i++) { |
| 45 | + BigInteger a = uniformRandom(BigInteger.TWO, n.subtract(BigInteger.TWO)); |
| 46 | + BigInteger jacobi = BigInteger.valueOf(jacobiSymbol(a, n)); |
| 47 | + if (jacobi.equals(BigInteger.ZERO)) return false; |
| 48 | + |
| 49 | + BigInteger exp = n.subtract(BigInteger.ONE).divide(BigInteger.TWO); |
| 50 | + BigInteger modExp = a.modPow(exp, n); |
| 51 | + |
| 52 | + // Euler's criterion: a^((n-1)/2) ≡ (a/n) (mod n) |
| 53 | + if (!modExp.equals(jacobi.mod(n))) { |
| 54 | + return false; // definitely composite |
| 55 | + } |
| 56 | + } |
| 57 | + return true; // probably prime |
| 58 | + } |
| 59 | + |
| 60 | + /** |
| 61 | + * Generates a random BigInteger between {@code min} and {@code max}, inclusive. |
| 62 | + */ |
| 63 | + private static BigInteger uniformRandom(BigInteger min, BigInteger max) { |
| 64 | + BigInteger result; |
| 65 | + do { |
| 66 | + result = new BigInteger(max.bitLength(), random); |
| 67 | + } while (result.compareTo(min) < 0 || result.compareTo(max) > 0); |
| 68 | + return result; |
| 69 | + } |
| 70 | + |
| 71 | + /** |
| 72 | + * Computes the Jacobi symbol (a/n). |
| 73 | + * Assumes n is positive and odd. |
| 74 | + */ |
| 75 | + private static int jacobiSymbol(BigInteger a, BigInteger n) { |
| 76 | + if (n.signum() <= 0 || n.mod(BigInteger.TWO).equals(BigInteger.ZERO)) { |
| 77 | + throw new IllegalArgumentException("n must be positive and odd."); |
| 78 | + } |
| 79 | + |
| 80 | + int result = 1; |
| 81 | + a = a.mod(n); |
| 82 | + |
| 83 | + while (a.compareTo(BigInteger.ZERO) != 0) { |
| 84 | + while (a.mod(BigInteger.TWO).equals(BigInteger.ZERO)) { |
| 85 | + a = a.divide(BigInteger.TWO); |
| 86 | + BigInteger nMod8 = n.mod(BigInteger.valueOf(8)); |
| 87 | + if (nMod8.equals(BigInteger.valueOf(3)) || nMod8.equals(BigInteger.valueOf(5))) { |
| 88 | + result = -result; |
| 89 | + } |
| 90 | + } |
| 91 | + |
| 92 | + BigInteger temp = a; |
| 93 | + a = n; |
| 94 | + n = temp; |
| 95 | + |
| 96 | + if (a.mod(BigInteger.valueOf(4)).equals(BigInteger.valueOf(3)) && n.mod(BigInteger.valueOf(4)).equals(BigInteger.valueOf(3))) { |
| 97 | + result = -result; |
| 98 | + } |
| 99 | + |
| 100 | + a = a.mod(n); |
| 101 | + } |
| 102 | + |
| 103 | + return n.equals(BigInteger.ONE) ? result : 0; |
| 104 | + } |
| 105 | +} |
0 commit comments