|
1 | 1 | package com.thealgorithms.searches; |
2 | 2 |
|
3 | | -import com.thealgorithms.devutils.searches.SearchAlgorithm; |
4 | | - |
5 | 3 | /** |
6 | | - * An implementation of the Jump Search algorithm. |
7 | | - * |
8 | | - * <p> |
9 | | - * Jump Search is an algorithm for searching sorted arrays. It works by dividing the array |
10 | | - * into blocks of a fixed size (the block size is typically the square root of the array length) |
11 | | - * and jumping ahead by this block size to find a range where the target element may be located. |
12 | | - * Once the range is found, a linear search is performed within that block. |
| 4 | + * Implementation of Jump Search algorithm. |
13 | 5 | * |
14 | | - * <p> |
15 | | - * The Jump Search algorithm is particularly effective for large sorted arrays where the cost of |
16 | | - * performing a linear search on the entire array would be prohibitive. |
| 6 | + * Time Complexity: O(√n) |
| 7 | + * Space Complexity: O(1) |
17 | 8 | * |
18 | | - * <p> |
19 | | - * Worst-case performance: O(√N)<br> |
20 | | - * Best-case performance: O(1)<br> |
21 | | - * Average performance: O(√N)<br> |
22 | | - * Worst-case space complexity: O(1) |
23 | | - * |
24 | | - * <p> |
25 | | - * This class implements the {@link SearchAlgorithm} interface, providing a generic search method |
26 | | - * for any comparable type. |
| 9 | + * Reference: https://en.wikipedia.org/wiki/Jump_search |
27 | 10 | */ |
28 | | -public class JumpSearch implements SearchAlgorithm { |
29 | 11 |
|
30 | | - /** |
31 | | - * Jump Search algorithm implementation. |
32 | | - * |
33 | | - * @param array the sorted array containing elements |
34 | | - * @param key the element to be searched |
35 | | - * @return the index of {@code key} if found, otherwise -1 |
36 | | - */ |
37 | | - @Override |
38 | | - public <T extends Comparable<T>> int find(T[] array, T key) { |
39 | | - int length = array.length; |
40 | | - int blockSize = (int) Math.sqrt(length); |
| 12 | +public class JumpSearch { |
| 13 | + |
| 14 | + public static int jumpSearch(int[] arr, int target) { |
| 15 | + int n = arr.length; |
| 16 | + int step = (int) Math.floor(Math.sqrt(n)); |
| 17 | + int prev = 0; |
41 | 18 |
|
42 | | - int limit = blockSize; |
43 | | - // Jumping ahead to find the block where the key may be located |
44 | | - while (limit < length && key.compareTo(array[limit]) > 0) { |
45 | | - limit = Math.min(limit + blockSize, length - 1); |
| 19 | + while (arr[Math.min(step, n) - 1] < target) { |
| 20 | + prev = step; |
| 21 | + step += Math.floor(Math.sqrt(n)); |
| 22 | + if (prev >= n) |
| 23 | + return -1; |
46 | 24 | } |
47 | 25 |
|
48 | | - // Perform linear search within the identified block |
49 | | - for (int i = limit - blockSize; i <= limit && i < length; i++) { |
50 | | - if (array[i].equals(key)) { |
| 26 | + for (int i = prev; i < Math.min(step, n); i++) { |
| 27 | + if (arr[i] == target) |
51 | 28 | return i; |
52 | | - } |
53 | 29 | } |
| 30 | + |
54 | 31 | return -1; |
55 | 32 | } |
| 33 | + |
| 34 | + public static void main(String[] args) { |
| 35 | + int[] arr = { 1, 3, 5, 7, 9, 12, 17, 21, 25 }; |
| 36 | + int target = 12; |
| 37 | + int index = jumpSearch(arr, target); |
| 38 | + System.out.println("Found at index: " + index); |
| 39 | + } |
56 | 40 | } |
0 commit comments