|
6 | 6 | * @Info https://math.libretexts.org/Bookshelves/Calculus/Calculus_3e_(Apex)/05%3A_Integration/5.03%3A_Riemann_Sums |
7 | 7 | */ |
8 | 8 | public class RiemannIntegration { |
9 | | - private final double deltaX; |
10 | 9 |
|
11 | | - /** |
12 | | - * Creating the integration class. |
13 | | - * @param deltaX This is essentially the change in each rectangle. You ideally want a very small positive values. If you want an extremely high accuracy, use {@code Double.MIN_DOUBLE}, but be warned: this will take an extremely long time. |
14 | | - * @exception IllegalArgumentException when you pass a negative value. |
15 | | - */ |
16 | | - public RiemannIntegration(final double deltaX) { |
17 | | - if (deltaX <= 0) { |
18 | | - throw new IllegalArgumentException("Accuracy must be a positive number. " + deltaX + " was passed instead."); |
19 | | - } |
20 | | - this.deltaX = deltaX; |
| 10 | + private static double calculateDeltaX (final double accuracy) { |
| 11 | + return Math.pow(10, -accuracy); |
21 | 12 | } |
22 | 13 |
|
23 | | - /** |
24 | | - * Creating the integration class. This will have good accuracy, but will take a few seconds to calculate complicated integrals. |
25 | | - */ |
26 | | - public RiemannIntegration() { |
27 | | - this(0.000000001); |
| 14 | + public double leftRiemannSum(final Function<Double, Double> function, final double lowerBoundary, final double upperBoundary, final double accuracy) { |
| 15 | + final double deltaX = calculateDeltaX (accuracy); |
| 16 | + double value = 0; |
| 17 | + for (double x = lowerBoundary; x < upperBoundary; x += deltaX) { |
| 18 | + value += deltaX * function.apply(x); |
| 19 | + } |
| 20 | + return value; |
28 | 21 | } |
29 | 22 |
|
30 | | - /** |
31 | | - * Integrates a function. |
32 | | - * @param function You will need to define this function, using {@code Function<Double, Double> function = x -> {...}}. |
33 | | - * @param riemannApproximationMethod Each sub-interval can use different shapes to approximate the integral. It is recommended to use Trapezoidal sum. |
34 | | - * @param lowerBoundary The lower bound of where your integration will start. Conventionally, this is the {@code a} value. |
35 | | - * @param upperBoundary The upper bound of where your intetgration will end. Conventionally, this is the {@code a} value. |
36 | | - * @return The area under the curve between the given bounds. |
37 | | - */ |
38 | | - public double integrate(final Function < Double, Double > function, final RiemannApproximationMethod riemannApproximationMethod, final double lowerBoundary, final double upperBoundary) { |
| 23 | + public double rightRiemannSum(final Function<Double, Double> function, final double lowerBoundary, final double upperBoundary, final double accuracy) { |
| 24 | + final double deltaX = calculateDeltaX (accuracy); |
| 25 | + double x = lowerBoundary; |
39 | 26 | double value = 0; |
40 | | - switch (riemannApproximationMethod) { |
41 | | - case LEFT_RIEMANN_SUM: { |
42 | | - for (double x = lowerBoundary; x < upperBoundary; x += deltaX) { |
43 | | - value += this.deltaX * function.apply(x); |
44 | | - x += deltaX; |
45 | | - } |
46 | | - break; |
47 | | - } |
48 | | - case RIGHT_RIEMANN_SUM: { |
49 | | - double x = lowerBoundary; |
50 | | - while (x < upperBoundary) { |
51 | | - x += deltaX; |
52 | | - value += this.deltaX * function.apply(x); |
53 | | - } |
54 | | - break; |
55 | | - } |
56 | | - case TRAPEZOIDAL_RIEMANN_SUM: { |
57 | | - value += function.apply(lowerBoundary) * deltaX; |
58 | | - for (double x = lowerBoundary + deltaX; x < upperBoundary; x += deltaX) { |
59 | | - value += function.apply(x) * deltaX * 2; |
60 | | - } |
61 | | - value += function.apply(upperBoundary) * deltaX; |
62 | | - value /= 2; |
63 | | - break; |
64 | | - } |
65 | | - case MIDPOINT_RIEMANN_SUM: { |
66 | | - for (double x = lowerBoundary + deltaX / 2; x < upperBoundary; x += deltaX) { |
67 | | - value += deltaX * function.apply(x); |
68 | | - } |
69 | | - break; |
70 | | - } |
| 27 | + while (x < upperBoundary) { |
| 28 | + x += deltaX; |
| 29 | + value += deltaX + function.apply(x); |
| 30 | + } |
| 31 | + return value; |
| 32 | + } |
| 33 | + |
| 34 | + public double midpointRiemannSum(final Function<Double, Double> function, final double lowerBoundary, final double upperBoundary, final double accuracy) { |
| 35 | + final double deltaX = calculateDeltaX (accuracy); |
| 36 | + double value = 0.0; |
| 37 | + for (double x = lowerBoundary + accuracy / 2.0; x < upperBoundary; x += accuracy) { |
| 38 | + value += accuracy * function.apply(x); |
71 | 39 | } |
72 | 40 | return value; |
73 | 41 | } |
74 | 42 |
|
75 | | - public enum RiemannApproximationMethod { |
76 | | - LEFT_RIEMANN_SUM, |
77 | | - RIGHT_RIEMANN_SUM, |
78 | | - MIDPOINT_RIEMANN_SUM, |
79 | | - TRAPEZOIDAL_RIEMANN_SUM |
| 43 | + public double trapezoidalRiemannSum(final Function<Double, Double> function, final double lowerBoundary, final double upperBoundary, final double accuracy) { |
| 44 | + final double deltaX = calculateDeltaX (accuracy); |
| 45 | + double value = function.apply(lowerBoundary) * deltaX; |
| 46 | + for (double x = lowerBoundary + deltaX; x < upperBoundary; x += deltaX) { |
| 47 | + value += function.apply(x) * deltaX * 2; |
| 48 | + } |
| 49 | + value += function.apply(upperBoundary) * deltaX; |
| 50 | + value /= 2; |
| 51 | + return value; |
80 | 52 | } |
81 | 53 |
|
82 | 54 | public static void main(String[] args) { |
|
0 commit comments