|
1 | 1 | package com.thealgorithms.machinelearning; |
2 | 2 |
|
3 | | -import org.junit.jupiter.api.Test; |
4 | 3 | import static org.junit.jupiter.api.Assertions.assertEquals; |
5 | 4 |
|
6 | 5 | import java.util.ArrayList; |
| 6 | +import org.junit.jupiter.api.Test; |
7 | 7 |
|
8 | 8 | class LinearRegressionTest { |
9 | 9 |
|
10 | | - @Test |
11 | | - void testLinearRegression() { |
12 | | - ArrayList<Double> dependentX = new ArrayList<>(); |
13 | | - ArrayList<Double> independentY = new ArrayList<>(); |
14 | | - |
15 | | - dependentX.add(1.0); |
16 | | - independentY.add(2.0); |
17 | | - dependentX.add(2.0); |
18 | | - independentY.add(3.0); |
19 | | - dependentX.add(3.0); |
20 | | - independentY.add(4.0); |
21 | | - dependentX.add(4.0); |
22 | | - independentY.add(5.0); |
23 | | - dependentX.add(5.0); |
24 | | - independentY.add(6.0); |
25 | | - |
26 | | - // Create LinearRegression object |
27 | | - LinearRegression lr = new LinearRegression(dependentX, independentY); |
28 | | - |
29 | | - // Check the slope (m) and intercept (c) |
30 | | - assertEquals(1.0, lr.getM(), 0.001); |
31 | | - assertEquals(1.0, lr.getC(), 0.001); |
32 | | - |
33 | | - // Check prediction for X = 6 |
34 | | - double predictedY = lr.PredictForX(6.0); |
35 | | - assertEquals(7.0, predictedY, 0.001); |
36 | | - } |
| 10 | + @Test |
| 11 | + void testLinearRegression() { |
| 12 | + ArrayList<Double> dependentX = new ArrayList<>(); |
| 13 | + ArrayList<Double> independentY = new ArrayList<>(); |
| 14 | + |
| 15 | + dependentX.add(1.0); |
| 16 | + independentY.add(2.0); |
| 17 | + dependentX.add(2.0); |
| 18 | + independentY.add(3.0); |
| 19 | + dependentX.add(3.0); |
| 20 | + independentY.add(4.0); |
| 21 | + dependentX.add(4.0); |
| 22 | + independentY.add(5.0); |
| 23 | + dependentX.add(5.0); |
| 24 | + independentY.add(6.0); |
| 25 | + |
| 26 | + // Create LinearRegression object |
| 27 | + LinearRegression lr = new LinearRegression(dependentX, independentY); |
| 28 | + |
| 29 | + // Check the slope (m) and intercept (c) |
| 30 | + assertEquals(1.0, lr.getM(), 0.001); |
| 31 | + assertEquals(1.0, lr.getC(), 0.001); |
| 32 | + |
| 33 | + // Check prediction for X = 6 |
| 34 | + double predictedY = lr.PredictForX(6.0); |
| 35 | + assertEquals(7.0, predictedY, 0.001); |
| 36 | + } |
37 | 37 | } |
0 commit comments