|
| 1 | +/** |
| 2 | + * Johnson's Algorithm for All-Pairs Shortest Paths |
| 3 | + * Reference: https://en.wikipedia.org/wiki/Johnson%27s_algorithm |
| 4 | + */ |
| 5 | + |
| 6 | +// Helper: Bellman-Ford algorithm |
| 7 | +function bellmanFord(graph, source) { |
| 8 | + const dist = Array(graph.length).fill(Infinity) |
| 9 | + dist[source] = 0 |
| 10 | + for (let i = 0; i < graph.length - 1; i++) { |
| 11 | + for (let u = 0; u < graph.length; u++) { |
| 12 | + for (const [v, w] of graph[u]) { |
| 13 | + if (dist[u] + w < dist[v]) { |
| 14 | + dist[v] = dist[u] + w |
| 15 | + } |
| 16 | + } |
| 17 | + } |
| 18 | + } |
| 19 | + // Check for negative-weight cycles |
| 20 | + for (let u = 0; u < graph.length; u++) { |
| 21 | + for (const [v, w] of graph[u]) { |
| 22 | + if (dist[u] + w < dist[v]) { |
| 23 | + throw new Error('Graph contains a negative-weight cycle') |
| 24 | + } |
| 25 | + } |
| 26 | + } |
| 27 | + return dist |
| 28 | +} |
| 29 | + |
| 30 | +// Helper: Dijkstra's algorithm |
| 31 | +function dijkstra(graph, source) { |
| 32 | + const dist = Array(graph.length).fill(Infinity) |
| 33 | + dist[source] = 0 |
| 34 | + const visited = Array(graph.length).fill(false) |
| 35 | + for (let i = 0; i < graph.length; i++) { |
| 36 | + let u = -1 |
| 37 | + for (let j = 0; j < graph.length; j++) { |
| 38 | + if (!visited[j] && (u === -1 || dist[j] < dist[u])) { |
| 39 | + u = j |
| 40 | + } |
| 41 | + } |
| 42 | + if (dist[u] === Infinity) break |
| 43 | + visited[u] = true |
| 44 | + for (const [v, w] of graph[u]) { |
| 45 | + if (dist[u] + w < dist[v]) { |
| 46 | + dist[v] = dist[u] + w |
| 47 | + } |
| 48 | + } |
| 49 | + } |
| 50 | + return dist |
| 51 | +} |
| 52 | + |
| 53 | + |
| 54 | +export function johnsonsAlgorithm(graph) { |
| 55 | + const n = graph.length |
| 56 | + |
| 57 | + const newGraph = graph.map(edges => [...edges]) |
| 58 | + newGraph.push([]) |
| 59 | + for (let v = 0; v < n; v++) { |
| 60 | + newGraph[newGraph.length - 1].push([v, 0]) |
| 61 | + } |
| 62 | + // Step 1: Run Bellman-Ford from new vertex |
| 63 | + const h = bellmanFord(newGraph, n) |
| 64 | + // Step 2: Reweight all edges |
| 65 | + const reweighted = [] |
| 66 | + for (let u = 0; u < n; u++) { |
| 67 | + reweighted[u] = [] |
| 68 | + for (const [v, w] of graph[u]) { |
| 69 | + reweighted[u].push([v, w + h[u] - h[v]]) |
| 70 | + } |
| 71 | + } |
| 72 | + // Step 3: Run Dijkstra from each vertex |
| 73 | + const result = [] |
| 74 | + for (let u = 0; u < n; u++) { |
| 75 | + const d = dijkstra(reweighted, u) |
| 76 | + result[u] = d.map((dist, v) => dist + h[v] - h[u]) |
| 77 | + } |
| 78 | + return result |
| 79 | +} |
| 80 | + |
| 81 | +// Example usage: |
| 82 | +// const graph = [ |
| 83 | +// [[1, 3], [2, 8], [4, -4]], |
| 84 | +// [[3, 1], [4, 7]], |
| 85 | +// [[1, 4]], |
| 86 | +// [[0, 2], [2, -5]], |
| 87 | +// [[3, 6]] |
| 88 | +// ] |
| 89 | +// console.log(johnsonsAlgorithm(graph)) |
0 commit comments