@@ -629,13 +629,15 @@ def smooth_l1_loss(y_true: np.ndarray, y_pred: np.ndarray, beta: float = 1.0) ->
629629 return np .mean (loss )
630630
631631
632- def kullback_leibler_divergence (y_true : np .ndarray , y_pred : np .ndarray ) -> float :
632+ def kullback_leibler_divergence (
633+ y_true : np .ndarray , y_pred : np .ndarray , epsilon : float = 1e-10
634+ ) -> float :
633635 """
634636 Calculate the Kullback-Leibler divergence (KL divergence) loss between true labels
635637 and predicted probabilities.
636638
637- KL divergence loss quantifies dissimilarity between true labels and predicted
638- probabilities. It's often used in training generative models.
639+ KL divergence loss quantifies the dissimilarity between true labels and predicted
640+ probabilities. It is often used in training generative models.
639641
640642 KL = Σ(y_true * ln(y_true / y_pred))
641643
@@ -649,6 +651,7 @@ def kullback_leibler_divergence(y_true: np.ndarray, y_pred: np.ndarray) -> float
649651 >>> predicted_probs = np.array([0.3, 0.3, 0.4])
650652 >>> float(kullback_leibler_divergence(true_labels, predicted_probs))
651653 0.030478754035472025
654+
652655 >>> true_labels = np.array([0.2, 0.3, 0.5])
653656 >>> predicted_probs = np.array([0.3, 0.3, 0.4, 0.5])
654657 >>> kullback_leibler_divergence(true_labels, predicted_probs)
@@ -659,7 +662,13 @@ def kullback_leibler_divergence(y_true: np.ndarray, y_pred: np.ndarray) -> float
659662 if len (y_true ) != len (y_pred ):
660663 raise ValueError ("Input arrays must have the same length." )
661664
662- kl_loss = y_true * np .log (y_true / y_pred )
665+ # negligible epsilon to avoid issues with log(0) or division by zero
666+ epsilon = 1e-10
667+ y_pred = np .clip (y_pred , epsilon , None )
668+
669+ # calculate KL divergence only where y_true is not zero
670+ kl_loss = np .where (y_true != 0 , y_true * np .log (y_true / y_pred ), 0.0 )
671+
663672 return np .sum (kl_loss )
664673
665674
0 commit comments