|
| 1 | +''' |
| 2 | +suffix_array.py |
| 3 | +
|
| 4 | +Professional implementation of Suffix Array and LCP (Longest Common Prefix) array in Python. |
| 5 | +
|
| 6 | +Features: |
| 7 | +- Efficient O(n log n) construction using doubling method |
| 8 | +- Kasai's algorithm for LCP array in O(n) |
| 9 | +- Detailed docstrings and complexity analysis |
| 10 | +- Standalone usage example and simple unit tests |
| 11 | +
|
| 12 | +Author: Idris Ibrahim Erten |
| 13 | +License: MIT |
| 14 | +''' |
| 15 | + |
| 16 | +def build_suffix_array(s: str) -> list[int]: |
| 17 | + """ |
| 18 | + Builds the suffix array of the given string using the doubling algorithm. |
| 19 | +
|
| 20 | + Parameters: |
| 21 | + s (str): Input string |
| 22 | +
|
| 23 | + Returns: |
| 24 | + list[int]: List of starting indices of suffixes in sorted order |
| 25 | +
|
| 26 | + Complexity: |
| 27 | + O(n log n) time and O(n) space. |
| 28 | + """ |
| 29 | + # Append a sentinel that is lexicographically smaller than all other characters |
| 30 | + s += '\0' |
| 31 | + n = len(s) |
| 32 | + # Initial ranking by character code |
| 33 | + ranks = [ord(c) for c in s] |
| 34 | + sa = list(range(n)) |
| 35 | + tmp = [0] * n |
| 36 | + k = 1 |
| 37 | + # Doubling loop |
| 38 | + while k < n: |
| 39 | + # Sort by (rank[i], rank[i+k]) pairs |
| 40 | + sa.sort(key=lambda i: (ranks[i], ranks[i + k] if i + k < n else -1)) |
| 41 | + # Temporary array for new ranks |
| 42 | + tmp[sa[0]] = 0 |
| 43 | + for i in range(1, n): |
| 44 | + prev, curr = sa[i - 1], sa[i] |
| 45 | + # Compare pair (rank, next rank) |
| 46 | + r_prev = (ranks[prev], ranks[prev + k] if prev + k < n else -1) |
| 47 | + r_curr = (ranks[curr], ranks[curr + k] if curr + k < n else -1) |
| 48 | + tmp[curr] = tmp[prev] + (1 if r_curr != r_prev else 0) |
| 49 | + ranks, tmp = tmp, ranks # reuse lists to save memory |
| 50 | + k <<= 1 |
| 51 | + if ranks[sa[-1]] == n - 1: |
| 52 | + break |
| 53 | + # Drop the sentinel index |
| 54 | + return sa[1:] |
| 55 | + |
| 56 | + |
| 57 | +def build_lcp_array(s: str, sa: list[int]) -> list[int]: |
| 58 | + """ |
| 59 | + Builds the LCP (Longest Common Prefix) array using Kasai's algorithm. |
| 60 | +
|
| 61 | + Parameters: |
| 62 | + s (str): Original string |
| 63 | + sa (list[int]): Suffix array of s |
| 64 | +
|
| 65 | + Returns: |
| 66 | + list[int]: LCP array where lcp[i] = LCP(sa[i], sa[i-1]) |
| 67 | +
|
| 68 | + Complexity: |
| 69 | + O(n) time and O(n) space. |
| 70 | + """ |
| 71 | + n = len(sa) |
| 72 | + # Inverse of suffix array: pos[i] gives rank of suffix at i |
| 73 | + pos = [0] * n |
| 74 | + for i, suf in enumerate(sa): |
| 75 | + pos[suf] = i |
| 76 | + lcp = [0] * n |
| 77 | + k = 0 |
| 78 | + for i in range(len(s)): |
| 79 | + if pos[i] == 0: |
| 80 | + k = 0 |
| 81 | + continue |
| 82 | + j = sa[pos[i] - 1] |
| 83 | + # Compare characters starting from k |
| 84 | + while i + k < len(s) and j + k < len(s) and s[i + k] == s[j + k]: |
| 85 | + k += 1 |
| 86 | + lcp[pos[i]] = k |
| 87 | + if k: |
| 88 | + k -= 1 |
| 89 | + return lcp[1:] |
| 90 | + |
| 91 | + |
| 92 | +if __name__ == '__main__': |
| 93 | + # Example usage and simple tests |
| 94 | + test_strings = ['banana', 'abracadabra', 'mississippi'] |
| 95 | + for s in test_strings: |
| 96 | + sa = build_suffix_array(s) |
| 97 | + lcp = build_lcp_array(s, sa) |
| 98 | + print(f"String: {s}") |
| 99 | + print(f"Suffix Array: {sa}") |
| 100 | + print(f"LCP Array : {lcp}\n") |
| 101 | + |
| 102 | + # Assertions for correctness |
| 103 | + s = 'banana' |
| 104 | + expected_sa = [5, 3, 1, 0, 4, 2] # indices of sorted suffixes |
| 105 | + assert build_suffix_array(s) == expected_sa, 'SA test failed' |
| 106 | + print('All tests passed!') |
0 commit comments