|
| 1 | +from collections.abc import Callable |
| 2 | + |
| 3 | +import numpy as np |
| 4 | + |
| 5 | + |
| 6 | +def weierstrass_method( |
| 7 | + polynomial: Callable[[np.ndarray], np.ndarray], |
| 8 | + degree: int, |
| 9 | + roots: np.ndarray | None = None, |
| 10 | + max_iter: int = 100, |
| 11 | +) -> np.ndarray: |
| 12 | + """ |
| 13 | + Approximates all complex roots of a polynomial using the |
| 14 | + Weierstrass (Durand-Kerner) method. |
| 15 | + Args: |
| 16 | + polynomial: A function that takes a NumPy array of complex numbers and returns |
| 17 | + the polynomial values at those points. |
| 18 | + degree: Degree of the polynomial (number of roots to find). Must be ≥ 1. |
| 19 | + roots: Optional initial guess as a NumPy array of complex numbers. |
| 20 | + Must have length equal to 'degree'. |
| 21 | + If None, perturbed complex roots of unity are used. |
| 22 | + max_iter: Number of iterations to perform (default: 100). |
| 23 | +
|
| 24 | + Returns: |
| 25 | + np.ndarray: Array of approximated complex roots. |
| 26 | +
|
| 27 | + Raises: |
| 28 | + ValueError: If degree < 1, or if initial roots length doesn't match the degree. |
| 29 | +
|
| 30 | + Note: |
| 31 | + - Root updates are clipped to prevent numerical overflow. |
| 32 | +
|
| 33 | + Example: |
| 34 | + >>> import numpy as np |
| 35 | + >>> def check(poly, degree, expected): |
| 36 | + ... roots = weierstrass_method(poly, degree) |
| 37 | + ... return np.allclose(np.sort(roots), np.sort(expected)) |
| 38 | +
|
| 39 | + >>> check( |
| 40 | + ... lambda x: x**2 - 1, |
| 41 | + ... 2, |
| 42 | + ... np.array([-1, 1])) |
| 43 | + True |
| 44 | +
|
| 45 | + >>> check( |
| 46 | + ... lambda x: x**3 - 4.5*x**2 + 5.75*x - 1.875, |
| 47 | + ... 3, |
| 48 | + ... np.array([1.5, 0.5, 2.5]) |
| 49 | + ... ) |
| 50 | + True |
| 51 | +
|
| 52 | + See Also: |
| 53 | + https://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method |
| 54 | + """ |
| 55 | + |
| 56 | + if degree < 1: |
| 57 | + raise ValueError("Degree of the polynomial must be at least 1.") |
| 58 | + |
| 59 | + if roots is None: |
| 60 | + # Use perturbed complex roots of unity as initial guesses |
| 61 | + rng = np.random.default_rng() |
| 62 | + roots = np.array( |
| 63 | + [ |
| 64 | + np.exp(2j * np.pi * i / degree) * (1 + 1e-3 * rng.random()) |
| 65 | + for i in range(degree) |
| 66 | + ], |
| 67 | + dtype=np.complex128, |
| 68 | + ) |
| 69 | + |
| 70 | + else: |
| 71 | + roots = np.asarray(roots, dtype=np.complex128) |
| 72 | + if roots.shape[0] != degree: |
| 73 | + raise ValueError( |
| 74 | + "Length of initial roots must match the degree of the polynomial." |
| 75 | + ) |
| 76 | + |
| 77 | + for _ in range(max_iter): |
| 78 | + # Construct the product denominator for each root |
| 79 | + denominator = np.array([root - roots for root in roots], dtype=np.complex128) |
| 80 | + np.fill_diagonal(denominator, 1.0) # Avoid zero in diagonal |
| 81 | + denominator = np.prod(denominator, axis=1) |
| 82 | + |
| 83 | + # Evaluate polynomial at each root |
| 84 | + numerator = polynomial(roots).astype(np.complex128) |
| 85 | + |
| 86 | + # Compute update and clip to prevent overflow |
| 87 | + delta = numerator / denominator |
| 88 | + delta = np.clip(delta, -1e10, 1e10) |
| 89 | + roots -= delta |
| 90 | + |
| 91 | + return roots |
| 92 | + |
| 93 | + |
| 94 | +if __name__ == "__main__": |
| 95 | + import doctest |
| 96 | + |
| 97 | + doctest.testmod() |
0 commit comments