|
| 1 | +""" |
| 2 | +This program is a MNIST classifier using AlexNet. It accepts three parameters provided as a command line input. |
| 3 | +The first two inputs are two digits between 0-9 which are used to train and test the classifier and the third |
| 4 | +parameter controls the number of training epochs. |
| 5 | +Syntax: python program.py <number> <number> <number> |
| 6 | +
|
| 7 | +For example, to train and test AlexNet with 1 and 2 MNIST samples with 4 training epochs, the command line input should be: |
| 8 | +python program.py 1 2 4 |
| 9 | +
|
| 10 | +""" |
| 11 | + |
| 12 | + |
| 13 | +import sys |
| 14 | +import torch |
| 15 | +import torch.nn as nn |
| 16 | +import torchvision.datasets as dset |
| 17 | +import torchvision.transforms as transforms |
| 18 | +from torch.autograd import Variable |
| 19 | +import torch.nn.functional as F |
| 20 | +import torch.optim as optim |
| 21 | + |
| 22 | + |
| 23 | +class AlexNet(nn.Module): |
| 24 | + def __init__(self, num=10): |
| 25 | + super(AlexNet, self).__init__() |
| 26 | + self.feature = nn.Sequential( |
| 27 | + # Define feature extractor here... |
| 28 | + nn.Conv2d(1, 32, kernel_size=5, stride=1, padding=1), |
| 29 | + nn.ReLU(inplace=True), |
| 30 | + nn.Conv2d(32, 64, kernel_size=3, padding=1), |
| 31 | + nn.ReLU(inplace=True), |
| 32 | + nn.MaxPool2d(kernel_size=2, stride=2), |
| 33 | + nn.Conv2d(64, 96, kernel_size=3, padding=1), |
| 34 | + nn.ReLU(inplace=True), |
| 35 | + nn.Conv2d(96, 64, kernel_size=3, padding=1), |
| 36 | + nn.ReLU(inplace=True), |
| 37 | + nn.Conv2d(64, 32, kernel_size=3, padding=1), |
| 38 | + nn.ReLU(inplace=True), |
| 39 | + nn.MaxPool2d(kernel_size=2, stride=1) |
| 40 | + ) |
| 41 | + |
| 42 | + self.classifier = nn.Sequential( |
| 43 | + # Define classifier here... |
| 44 | + nn.Dropout(), |
| 45 | + nn.Linear(32*12*12, 2048), |
| 46 | + nn.ReLU(inplace=True), |
| 47 | + nn.Dropout(), |
| 48 | + nn.Linear(2048, 1024), |
| 49 | + nn.ReLU(inplace=True), |
| 50 | + nn.Linear(1024, 10) |
| 51 | + ) |
| 52 | + |
| 53 | + def forward(self, x): |
| 54 | + # define forward network 'x' that combines feature extractor and classifier |
| 55 | + x = self.feature(x) |
| 56 | + x = x.view(x.size(0), -1) |
| 57 | + x = self.classifier(x) |
| 58 | + return x |
| 59 | + |
| 60 | + |
| 61 | +def load_subset(full_train_set, full_test_set, label_one, label_two): |
| 62 | + # Sample the correct train labels |
| 63 | + train_set = [] |
| 64 | + data_lim = 20000 |
| 65 | + for data in full_train_set: |
| 66 | + if data_lim>0: |
| 67 | + data_lim-=1 |
| 68 | + if data[1]==label_one or data[1]==label_two: |
| 69 | + train_set.append(data) |
| 70 | + else: |
| 71 | + break |
| 72 | + |
| 73 | + test_set = [] |
| 74 | + data_lim = 1000 |
| 75 | + for data in full_test_set: |
| 76 | + if data_lim>0: |
| 77 | + data_lim-=1 |
| 78 | + if data[1]==label_one or data[1]==label_two: |
| 79 | + test_set.append(data) |
| 80 | + else: |
| 81 | + break |
| 82 | + |
| 83 | + return train_set, test_set |
| 84 | + |
| 85 | +def train(model,optimizer,train_loader,epoch): |
| 86 | + model.train() |
| 87 | + for batch_idx, (data, target) in enumerate(train_loader): |
| 88 | + if torch.cuda.is_available(): |
| 89 | + data, target = data.cuda(), target.cuda() |
| 90 | + data, target = Variable(data), Variable(target) |
| 91 | + optimizer.zero_grad() |
| 92 | + output = model(data) |
| 93 | + loss = F.cross_entropy(output, target) |
| 94 | + loss.backward() |
| 95 | + optimizer.step() |
| 96 | + |
| 97 | +def test(model,test_loader): |
| 98 | + model.eval() |
| 99 | + test_loss = 0 |
| 100 | + correct = 0 |
| 101 | + for data, target in test_loader: |
| 102 | + if torch.cuda.is_available(): |
| 103 | + data, target = data.cuda(), target.cuda() |
| 104 | + with torch.no_grad(): |
| 105 | + data, target = Variable(data), Variable(target) |
| 106 | + output = model(data) |
| 107 | + test_loss += F.cross_entropy(output, target, reduction='sum').item()#size_average=False |
| 108 | + pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability |
| 109 | + correct += pred.eq(target.data.view_as(pred)).long().cpu().sum() |
| 110 | + |
| 111 | + test_loss /= len(test_loader.dataset) |
| 112 | + acc=100. * float(correct.to(torch.device('cpu')).numpy()) |
| 113 | + test_accuracy = (acc / len(test_loader.dataset)) |
| 114 | + return test_accuracy |
| 115 | + |
| 116 | + |
| 117 | +""" Start to call """ |
| 118 | + |
| 119 | +if __name__ == '__main__': |
| 120 | + |
| 121 | + if len(sys.argv) == 3: |
| 122 | + print("Usage: python assignment.py <number> <number>") |
| 123 | + sys.exit(1) |
| 124 | + |
| 125 | + input_data_one = sys.argv[1].strip() |
| 126 | + input_data_two = sys.argv[2].strip() |
| 127 | + epochs = sys.argv[3].strip() |
| 128 | + |
| 129 | + """ Call to function that will perform the computation. """ |
| 130 | + if input_data_one.isdigit() and input_data_two.isdigit() and epochs.isdigit(): |
| 131 | + |
| 132 | + label_one = int(input_data_one) |
| 133 | + label_two = int(input_data_two) |
| 134 | + epochs = int(epochs) |
| 135 | + |
| 136 | + if label_one!=label_two and 0<=label_one<=9 and 0<=label_two<=9: |
| 137 | + torch.manual_seed(42) |
| 138 | + # Load MNIST dataset |
| 139 | + trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) |
| 140 | + full_train_set = dset.MNIST(root='./data', train=True, transform=trans, download=True) |
| 141 | + full_test_set = dset.MNIST(root='./data', train=False, transform=trans) |
| 142 | + batch_size = 16 |
| 143 | + # Get final train and test sets |
| 144 | + train_set, test_set = load_subset(full_train_set,full_test_set,label_one,label_two) |
| 145 | + |
| 146 | + train_loader = torch.utils.data.DataLoader(dataset=train_set,batch_size=batch_size,shuffle=False) |
| 147 | + test_loader = torch.utils.data.DataLoader(dataset=test_set,batch_size=batch_size,shuffle=False) |
| 148 | + |
| 149 | + model = AlexNet() |
| 150 | + if torch.cuda.is_available(): |
| 151 | + model.cuda() |
| 152 | + |
| 153 | + optimizer = optim.SGD(model.parameters(), lr=0.01) |
| 154 | + |
| 155 | + for epoch in range(1, epochs+1): |
| 156 | + train(model,optimizer,train_loader,epoch) |
| 157 | + accuracy = test(model,test_loader) |
| 158 | + |
| 159 | + print(round(accuracy,2)) |
| 160 | + |
| 161 | + |
| 162 | + else: |
| 163 | + print("Invalid input") |
| 164 | + else: |
| 165 | + print("Invalid input") |
| 166 | + |
| 167 | + |
| 168 | +""" End to call """ |
0 commit comments