|
| 1 | +""" |
| 2 | +Greedy approximation algorithm for the minimum set cover problem. |
| 3 | +
|
| 4 | +Author: Ben Chaddha (https://github.com/benchaddha) |
| 5 | +
|
| 6 | +Problem Definition: |
| 7 | + Given a universe U and a collection S of subsets of U such that the union |
| 8 | + of all subsets equals U, find the minimum number of subsets whose union |
| 9 | + covers U. |
| 10 | +
|
| 11 | + This problem is NP-complete (Karp, 1972), making exact solutions |
| 12 | + computationally infeasible for large instances. |
| 13 | +
|
| 14 | +Algorithm: |
| 15 | + This implementation uses the standard greedy heuristic that iteratively |
| 16 | + selects the subset covering the most uncovered elements until all elements |
| 17 | + are covered. |
| 18 | +
|
| 19 | +Complexity: |
| 20 | + Time: O(|U| * |S|) where |S| is the number of subsets |
| 21 | + Space: O(|U| + |S|) |
| 22 | +
|
| 23 | +Approximation Guarantee: |
| 24 | + The greedy algorithm achieves an H_d-approximation where: |
| 25 | + - d = max_i |S_i| (maximum subset size) |
| 26 | + - H_d = sum(1/i for i in 1..d) (d-th harmonic number) |
| 27 | + - H_d ≤ ln(d) + 1 |
| 28 | +
|
| 29 | + For the general case, this gives a ln(|U|) + 1 approximation. Feige (1998) |
| 30 | + proved this is essentially optimal: no polynomial-time algorithm can achieve |
| 31 | + a (1 - ε) * ln(|U|) approximation for any ε > 0, unless P = NP. |
| 32 | +
|
| 33 | +Limitations: |
| 34 | + - This implementation assumes all subsets have equal cost (unweighted). |
| 35 | + - For the weighted set cover variant, subset selection should be based on |
| 36 | + the cost-effectiveness ratio (uncovered elements / cost). |
| 37 | + - The greedy approach may be far from optimal for specific instances, |
| 38 | + though it provides the theoretical guarantee stated above. |
| 39 | +
|
| 40 | +References: |
| 41 | +- R. M. Karp, "Reducibility Among Combinatorial Problems", 1972. |
| 42 | +- D. S. Johnson, "Approximation algorithms for combinatorial problems", 1974. |
| 43 | +- T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, |
| 44 | + "Introduction to Algorithms", Chapter 35.3, Set Cover. |
| 45 | +- U. Feige, "A Threshold of ln n for Approximating Set Cover", |
| 46 | + Journal of the ACM, 45(4), 634-652, 1998. |
| 47 | +
|
| 48 | +Note: |
| 49 | + Element and subset identifier types must be hashable for set operations. |
| 50 | +
|
| 51 | +Example: |
| 52 | + >>> universe = {1, 2, 3, 4, 5} |
| 53 | + >>> subsets = { |
| 54 | + ... "A": {1, 2}, |
| 55 | + ... "B": {2, 3, 4}, |
| 56 | + ... "C": {3, 4}, |
| 57 | + ... "D": {4, 5}, |
| 58 | + ... } |
| 59 | + >>> cover = greedy_set_cover(universe, subsets) |
| 60 | + >>> # Verify the cover is valid |
| 61 | + >>> set().union(*(subsets[i] for i in cover)) == universe |
| 62 | + True |
| 63 | + >>> # The greedy algorithm selects B and D (or B and a subset covering 1, 5) |
| 64 | + >>> len(cover) <= 3 |
| 65 | + True |
| 66 | +
|
| 67 | + >>> # Optimal case: one subset covers everything |
| 68 | + >>> universe2 = {1, 2, 3} |
| 69 | + >>> subsets2 = {"A": {1, 2, 3}, "B": {1}, "C": {2}} |
| 70 | + >>> cover2 = greedy_set_cover(universe2, subsets2) |
| 71 | + >>> cover2 == {"A"} |
| 72 | + True |
| 73 | +
|
| 74 | + >>> # Example showing greedy may not be optimal |
| 75 | + >>> # Optimal is 2 sets {B,C}, but greedy might pick A first |
| 76 | + >>> universe3 = {1, 2, 3, 4} |
| 77 | + >>> subsets3 = {"A": {1, 2}, "B": {1, 3, 4}, "C": {2, 3, 4}} |
| 78 | + >>> cover3 = greedy_set_cover(universe3, subsets3) |
| 79 | + >>> len(cover3) <= 3 |
| 80 | + True |
| 81 | + >>> set().union(*(subsets3[i] for i in cover3)) == universe3 |
| 82 | + True |
| 83 | +
|
| 84 | + >>> # Error handling - empty universe |
| 85 | + >>> greedy_set_cover(set(), {"A": {1}}) |
| 86 | + Traceback (most recent call last): |
| 87 | + ... |
| 88 | + ValueError: Universe must be non-empty. |
| 89 | +
|
| 90 | + >>> # Error handling - empty subsets |
| 91 | + >>> greedy_set_cover({1, 2}, {}) |
| 92 | + Traceback (most recent call last): |
| 93 | + ... |
| 94 | + ValueError: Subsets mapping must be non-empty. |
| 95 | +
|
| 96 | + >>> # Error handling - subsets don't cover universe |
| 97 | + >>> greedy_set_cover({1, 2, 3}, {"A": {1}, "B": {2}}) |
| 98 | + Traceback (most recent call last): |
| 99 | + ... |
| 100 | + ValueError: The provided subsets do not cover the universe. |
| 101 | +""" |
| 102 | + |
| 103 | +from __future__ import annotations |
| 104 | + |
| 105 | +from collections.abc import Hashable, Iterable, Mapping |
| 106 | + |
| 107 | + |
| 108 | +def greedy_set_cover( |
| 109 | + universe: Iterable[Hashable], |
| 110 | + subsets: Mapping[Hashable, Iterable[Hashable]], |
| 111 | +) -> set[Hashable]: |
| 112 | + """ |
| 113 | + Greedy approximation for minimum set cover. |
| 114 | +
|
| 115 | + Args: |
| 116 | + universe: The set of elements to be covered. |
| 117 | + subsets: A mapping from subset identifiers to their elements. |
| 118 | +
|
| 119 | + Returns: |
| 120 | + A set of subset identifiers that covers the universe. |
| 121 | +
|
| 122 | + Raises: |
| 123 | + ValueError: If the universe is empty, subsets is empty, or if the |
| 124 | + provided subsets cannot cover the universe. |
| 125 | +
|
| 126 | + Time Complexity: O(|universe| * |subsets|) |
| 127 | + Space Complexity: O(|universe| + |subsets|) |
| 128 | + """ |
| 129 | + |
| 130 | + # Normalize inputs to sets so we do not mutate user-provided structures. |
| 131 | + universe_set = set(universe) |
| 132 | + if not universe_set: |
| 133 | + raise ValueError("Universe must be non-empty.") |
| 134 | + |
| 135 | + if not subsets: |
| 136 | + raise ValueError("Subsets mapping must be non-empty.") |
| 137 | + |
| 138 | + normalized_subsets: dict[Hashable, set[Hashable]] = { |
| 139 | + key: set(s) for key, s in subsets.items() |
| 140 | + } |
| 141 | + |
| 142 | + # Quick feasibility check: if the union of all subsets does not cover U, |
| 143 | + # we can terminate early. This is preferable to silently returning |
| 144 | + # an incomplete "cover". |
| 145 | + union_of_subsets: set[Hashable] = set().union(*normalized_subsets.values()) |
| 146 | + if not universe_set.issubset(union_of_subsets): |
| 147 | + raise ValueError("The provided subsets do not cover the universe.") |
| 148 | + |
| 149 | + uncovered: set[Hashable] = set(universe_set) |
| 150 | + chosen_subsets: set[Hashable] = set() |
| 151 | + |
| 152 | + # Standard greedy loop: at each step, select the subset that covers |
| 153 | + # the largest number of remaining uncovered elements. |
| 154 | + while uncovered: |
| 155 | + best_key: Hashable | None = None |
| 156 | + best_gain = 0 |
| 157 | + |
| 158 | + for key, subset in normalized_subsets.items(): |
| 159 | + if key in chosen_subsets: |
| 160 | + continue # already selected |
| 161 | + # Intersection with uncovered elements gives the marginal gain. |
| 162 | + gain = len(uncovered & subset) |
| 163 | + if gain > best_gain: |
| 164 | + best_gain = gain |
| 165 | + best_key = key |
| 166 | + |
| 167 | + # If no subset yields a positive gain, but uncovered is non-empty, |
| 168 | + # the instance is effectively uncoverable (should not happen if the |
| 169 | + # feasibility check above passed, but we keep this for robustness). |
| 170 | + if best_key is None or best_gain == 0: |
| 171 | + raise ValueError("The provided subsets do not cover the universe.") |
| 172 | + |
| 173 | + # Commit to the chosen subset and mark its elements as covered. |
| 174 | + chosen_subsets.add(best_key) |
| 175 | + uncovered -= normalized_subsets[best_key] |
| 176 | + |
| 177 | + return chosen_subsets |
| 178 | + |
| 179 | + |
| 180 | +if __name__ == "__main__": |
| 181 | + import doctest |
| 182 | + |
| 183 | + doctest.testmod() |
0 commit comments