|
| 1 | +import doctest |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +from numpy import ndarray |
| 5 | +from sklearn.datasets import load_iris |
| 6 | + |
| 7 | + |
| 8 | +def collect_dataset() -> tuple[ndarray, ndarray]: |
| 9 | + """ |
| 10 | + Load Iris dataset and return features and labels. |
| 11 | + Returns: |
| 12 | + tuple[ndarray, ndarray]: feature matrix and target labels |
| 13 | + Example: |
| 14 | + >>> x, y = collect_dataset() |
| 15 | + >>> x.shape |
| 16 | + (150, 4) |
| 17 | + >>> y.shape |
| 18 | + (150,) |
| 19 | + """ |
| 20 | + data = load_iris() |
| 21 | + return np.array(data.data), np.array(data.target) |
| 22 | + |
| 23 | + |
| 24 | +def compute_pairwise_affinities(data_x: ndarray, sigma: float = 1.0) -> ndarray: |
| 25 | + """ |
| 26 | + Compute high-dimensional affinities (P matrix) using Gaussian kernel. |
| 27 | + Args: |
| 28 | + data_x: Input data of shape (n_samples, n_features) |
| 29 | + sigma: Gaussian kernel bandwidth |
| 30 | + Returns: |
| 31 | + ndarray: Symmetrized probability matrix |
| 32 | + Example: |
| 33 | + >>> x = np.array([[0.0, 0.0], [1.0, 0.0]]) |
| 34 | + >>> p = compute_pairwise_affinities(x) |
| 35 | + >>> float(round(p[0, 1], 3)) |
| 36 | + 0.25 |
| 37 | + """ |
| 38 | + n_samples = data_x.shape[0] |
| 39 | + sum_x = np.sum(np.square(data_x), axis=1) |
| 40 | + dist_sq = np.add(np.add(-2 * np.dot(data_x, data_x.T), sum_x).T, sum_x) |
| 41 | + p = np.exp(-dist_sq / (2 * sigma**2)) |
| 42 | + np.fill_diagonal(p, 0) |
| 43 | + p /= np.sum(p) |
| 44 | + return (p + p.T) / (2 * n_samples) |
| 45 | + |
| 46 | + |
| 47 | +def compute_low_dim_affinities(low_dim_embedding: ndarray) -> tuple[ndarray, ndarray]: |
| 48 | + """ |
| 49 | + Compute low-dimensional affinities (Q matrix) using Student-t distribution. |
| 50 | + Args: |
| 51 | + low_dim_embedding: shape (n_samples, n_components) |
| 52 | + Returns: |
| 53 | + tuple[ndarray, ndarray]: Q probability matrix and numerator |
| 54 | + Example: |
| 55 | + >>> y = np.array([[0.0, 0.0], [1.0, 0.0]]) |
| 56 | + >>> q, num = compute_low_dim_affinities(y) |
| 57 | + >>> q.shape |
| 58 | + (2, 2) |
| 59 | + """ |
| 60 | + sum_y = np.sum(np.square(low_dim_embedding), axis=1) |
| 61 | + numerator = 1 / ( |
| 62 | + 1 |
| 63 | + + np.add( |
| 64 | + np.add(-2 * np.dot(low_dim_embedding, low_dim_embedding.T), sum_y).T, |
| 65 | + sum_y, |
| 66 | + ) |
| 67 | + ) |
| 68 | + np.fill_diagonal(numerator, 0) |
| 69 | + q = numerator / np.sum(numerator) |
| 70 | + return q, numerator |
| 71 | + |
| 72 | + |
| 73 | +def apply_tsne( |
| 74 | + data_x: ndarray, |
| 75 | + n_components: int = 2, |
| 76 | + learning_rate: float = 200.0, |
| 77 | + n_iter: int = 500, |
| 78 | +) -> ndarray: |
| 79 | + """ |
| 80 | + Apply t-SNE for dimensionality reduction. |
| 81 | + Args: |
| 82 | + data_x: Original dataset (features) |
| 83 | + n_components: Target dimension (2D or 3D) |
| 84 | + learning_rate: Step size for gradient descent |
| 85 | + n_iter: Number of iterations |
| 86 | + Returns: |
| 87 | + ndarray: Low-dimensional embedding of the data |
| 88 | + Example: |
| 89 | + >>> x, _ = collect_dataset() |
| 90 | + >>> y_emb = apply_tsne(x, n_components=2, n_iter=50) |
| 91 | + >>> y_emb.shape |
| 92 | + (150, 2) |
| 93 | + """ |
| 94 | + if n_components < 1 or n_iter < 1: |
| 95 | + raise ValueError("n_components and n_iter must be >= 1") |
| 96 | + |
| 97 | + n_samples = data_x.shape[0] |
| 98 | + rng = np.random.default_rng() |
| 99 | + y = rng.standard_normal((n_samples, n_components)) * 1e-4 |
| 100 | + |
| 101 | + p = compute_pairwise_affinities(data_x) |
| 102 | + p = np.maximum(p, 1e-12) |
| 103 | + |
| 104 | + y_inc = np.zeros_like(y) |
| 105 | + momentum = 0.5 |
| 106 | + |
| 107 | + for i in range(n_iter): |
| 108 | + q, num = compute_low_dim_affinities(y) |
| 109 | + q = np.maximum(q, 1e-12) |
| 110 | + |
| 111 | + pq = p - q |
| 112 | + d_y = 4 * ( |
| 113 | + np.dot((pq * num), y) |
| 114 | + - np.multiply(np.sum(pq * num, axis=1)[:, np.newaxis], y) |
| 115 | + ) |
| 116 | + |
| 117 | + y_inc = momentum * y_inc - learning_rate * d_y |
| 118 | + y += y_inc |
| 119 | + |
| 120 | + if i == int(n_iter / 4): |
| 121 | + momentum = 0.8 |
| 122 | + |
| 123 | + return y |
| 124 | + |
| 125 | + |
| 126 | +def main() -> None: |
| 127 | + """ |
| 128 | + Run t-SNE on Iris dataset and display the first 5 embeddings. |
| 129 | + Example: |
| 130 | + >>> main() # doctest: +ELLIPSIS |
| 131 | + t-SNE embedding (first 5 points): |
| 132 | + [[... |
| 133 | + """ |
| 134 | + data_x,labels = collect_dataset() |
| 135 | + y_emb = apply_tsne(data_x, n_components=2, n_iter=300) |
| 136 | + |
| 137 | + if not isinstance(y_emb, np.ndarray): |
| 138 | + raise TypeError("t-SNE embedding must be an ndarray") |
| 139 | + |
| 140 | + print("t-SNE embedding (first 5 points):") |
| 141 | + print(y_emb[:5]) |
| 142 | + |
| 143 | + # Optional visualization ( Ruff/mypy compliant) |
| 144 | + import matplotlib.pyplot as plt |
| 145 | + plt.scatter( |
| 146 | + y_emb[:, 0], |
| 147 | + y_emb[:, 1], |
| 148 | + c=labels, |
| 149 | + cmap="viridis" |
| 150 | + ) |
| 151 | + plt.title("t-SNE Visualization of Iris Dataset") |
| 152 | + plt.xlabel("Dimension 1") |
| 153 | + plt.ylabel("Dimension 2") |
| 154 | + plt.show() |
| 155 | + |
| 156 | +if __name__ == "__main__": |
| 157 | + # doctest.testmod() |
| 158 | + main() |
0 commit comments