@@ -72,44 +72,44 @@ def train_network(
7272 return w_co , bias_co , w_cs , bias_cs , error
7373
7474
75- def relu (x : np .array ) -> np .array :
75+ def relu (input_ : np .array ) -> np .array :
7676 """
7777 Relu activation function
7878 Hidden Layer due to it is less susceptible to vanish gradient
7979 """
80- for i in np .arange (0 , len (x )):
81- x [i , 0 ] = max (x [i , 0 ], 0 )
82- return x
80+ for i in np .arange (0 , len (input_ )):
81+ input_ [i , 0 ] = max (input_ [i , 0 ], 0 )
82+ return input_
8383
8484
85- def d_relu (x : np .array ) -> np .array :
85+ def d_relu (input_ : np .array ) -> np .array :
8686 """
8787 Relu Activation derivate function
8888 """
89- for i in np .arange (0 , len (x )):
90- if x [i , 0 ] >= 0 :
91- x [i , 0 ] = 1
89+ for i in np .arange (0 , len (input_ )):
90+ if input_ [i , 0 ] >= 0 :
91+ input_ [i , 0 ] = 1
9292 else :
93- x [i , 0 ] = 0
94- return x
93+ input_ [i , 0 ] = 0
94+ return input_
9595
9696
97- def sigmoid (x : float ) -> float :
97+ def sigmoid (input_ : float ) -> float :
9898 """
9999 Sigmoid activation function
100100 Output layer
101101 """
102- return 1 / (1 + np .exp (- x ))
102+ return 1 / (1 + np .exp (- input_ ))
103103
104104
105- def d_sigmoid (x : float ) -> float :
105+ def d_sigmoid (input_ : float ) -> float :
106106 """
107107 Sigmoid activation derivate
108108 """
109- return sigmoid (x ) ** 2 * np .exp (- x )
109+ return sigmoid (input_ ) ** 2 * np .exp (- input_ )
110110
111111
112- def main ():
112+ def main () -> None :
113113 """
114114 Import load_breast_cancer dataset
115115 It is a binary classification problem with 569 samples and 30 attributes
0 commit comments