@@ -62,7 +62,9 @@ def fit(self, features: np.ndarray, target: np.ndarray) -> None:
6262 >>> rr.theta is not None
6363 True
6464 """
65- features_scaled , mean , std = self .feature_scaling (features ) # Normalize features
65+ features_scaled , mean , std = self .feature_scaling (
66+ features
67+ ) # Normalize features
6668 m , n = features_scaled .shape
6769 self .theta = np .zeros (n ) # Initialize weights to zeros
6870
@@ -90,9 +92,11 @@ def predict(self, features: np.ndarray) -> np.ndarray:
9092 >>> predictions.shape == target.shape
9193 True
9294 """
93- features_scaled , _ , _ = self .feature_scaling (features ) # Scale features using training data
95+ features_scaled , _ , _ = self .feature_scaling (
96+ features
97+ ) # Scale features using training data
9498 return features_scaled .dot (self .theta )
95-
99+
96100 def compute_cost (self , features : np .ndarray , target : np .ndarray ) -> float :
97101 """
98102 Compute the cost function with regularization.
@@ -110,7 +114,9 @@ def compute_cost(self, features: np.ndarray, target: np.ndarray) -> float:
110114 >>> isinstance(cost, float)
111115 True
112116 """
113- features_scaled , _ , _ = self .feature_scaling (features ) # Scale features using training data
117+ features_scaled , _ , _ = self .feature_scaling (
118+ features
119+ ) # Scale features using training data
114120 m = len (target )
115121 predictions = features_scaled .dot (self .theta )
116122 cost = (1 / (2 * m )) * np .sum ((predictions - target ) ** 2 ) + (
0 commit comments