diff --git a/DIRECTORY.md b/DIRECTORY.md index 1ca537b991c8..e965d3b32ccf 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -243,6 +243,15 @@ * [Min Heap](data_structures/heap/min_heap.py) * [Randomized Heap](data_structures/heap/randomized_heap.py) * [Skew Heap](data_structures/heap/skew_heap.py) + * Kd Tree + * [Build Kdtree](data_structures/kd_tree/build_kdtree.py) + * Example + * [Example Usage](data_structures/kd_tree/example/example_usage.py) + * [Hypercube Points](data_structures/kd_tree/example/hypercube_points.py) + * [Kd Node](data_structures/kd_tree/kd_node.py) + * [Nearest Neighbour Search](data_structures/kd_tree/nearest_neighbour_search.py) + * Tests + * [Test Kdtree](data_structures/kd_tree/tests/test_kdtree.py) * Linked List * [Circular Linked List](data_structures/linked_list/circular_linked_list.py) * [Deque Doubly](data_structures/linked_list/deque_doubly.py) @@ -285,12 +294,6 @@ * Trie * [Radix Tree](data_structures/trie/radix_tree.py) * [Trie](data_structures/trie/trie.py) - * KD Tree - * [KD Tree Node](data_structures/kd_tree/kd_node.py) - * [Build KD Tree](data_structures/kd_tree/build_kdtree.py) - * [Nearest Neighbour Search](data_structures/kd_tree/nearest_neighbour_search.py) - * [Hypercibe Points](data_structures/kd_tree/example/hypercube_points.py) - * [Example Usage](data_structures/kd_tree/example/example_usage.py) ## Digital Image Processing * [Change Brightness](digital_image_processing/change_brightness.py) diff --git a/machine_learning/linear_regression.py b/machine_learning/linear_regression.py index 839a5366d1cc..0e4efc9dad8e 100644 --- a/machine_learning/linear_regression.py +++ b/machine_learning/linear_regression.py @@ -17,19 +17,27 @@ def collect_dataset(): The dataset contains ADR vs Rating of a Player :return : dataset obtained from the link, as matrix """ - response = requests.get( - "https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/" - "master/Week1/ADRvsRating.csv", - timeout=10, - ) - lines = response.text.splitlines() - data = [] - for item in lines: - item = item.split(",") - data.append(item) - data.pop(0) # This is for removing the labels from the list - dataset = np.matrix(data) - return dataset + try: + response = requests.get( + "https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/" + "master/Week1/ADRvsRating.csv", + timeout=10, + ) + lines = response.text.splitlines() + data = [] + for item in lines: + item = item.split(",") + data.append(item) + data.pop(0) # This is for removing the labels from the list + dataset = np.matrix(data) + return dataset + + except requests.exceptions.RequestException as e: + print(f"Error fetching the dataset: {e}") + return None + except Exception as e: + print(f"Unexpected error: {e}") + return None def run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta): @@ -113,5 +121,8 @@ def main(): print(f"{theta[0, i]:.5f}") +import doctest + if __name__ == "__main__": main() + doctest.testmod()