Skip to content

Commit 1dfb89d

Browse files
committed
init
0 parents  commit 1dfb89d

File tree

2 files changed

+129
-0
lines changed

2 files changed

+129
-0
lines changed

README.md

Whitespace-only changes.

docs/index.html

Lines changed: 129 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,129 @@
1+
<!DOCTYPE html>
2+
<html lang="en">
3+
<head>
4+
<meta charset="UTF-8">
5+
<meta name="viewport" content="width=device-width, initial-scale=1">
6+
<title>Advances in Time-Series Anomaly Detection<br><small>KDD ’25 Tutorial</small></title>
7+
<style>
8+
body { font-family: Arial, sans-serif; line-height: 1.6; margin: 0; padding: 0; color: #333; }
9+
.container { max-width: 800px; margin: 0 auto; padding: 20px; }
10+
header, footer { background: #f4f4f4; padding: 10px 20px; text-align: center; }
11+
h1 { margin-top: 0; }
12+
nav ul { list-style: none; padding: 0; display: flex; justify-content: center; gap: 15px; }
13+
nav a { text-decoration: none; color: #333; }
14+
section { margin-bottom: 30px; }
15+
.authors { font-style: italic; }
16+
.module-list li { margin-bottom: 8px; }
17+
.btn { display: inline-block; padding: 10px 15px; background: #007acc; color: #fff; text-decoration: none; border-radius: 4px; }
18+
.btn:hover { background: #005fa3; }
19+
.authors {
20+
display: flex;
21+
flex-wrap: wrap;
22+
justify-content: center;
23+
gap: 2rem;
24+
margin: 1rem 0;
25+
font-style: italic;
26+
}
27+
.author {
28+
text-align: center;
29+
max-width: 200px;
30+
}
31+
.author .name {
32+
display: block;
33+
font-weight: bold;
34+
color: #222;
35+
}
36+
.author .affiliation {
37+
display: block;
38+
font-size: 0.9em;
39+
color: #555;
40+
margin-top: 0.2em;
41+
}
42+
</style>
43+
</head>
44+
<body>
45+
<header>
46+
<h1>Advances in Time-Series Anomaly Detection</h1>
47+
<p><strong>Algorithms, Benchmarks, and Evaluation Measures</strong></p>
48+
<!-- <p class="authors">
49+
John Paparrizos (OSU,AUTh) • Paul Boniol (Inria, DI ENS, PSL, CNRS) • Qinghua Liu (OSU) • Themis Palpanas (Université Paris Cité, IUF)
50+
</p> -->
51+
52+
<div class="authors">
53+
<div class="author">
54+
<span class="name">John Paparrizos</span>
55+
<span class="affiliation">OSU • AUTh</span>
56+
</div>
57+
<div class="author">
58+
<span class="name">Paul Boniol</span>
59+
<span class="affiliation">Inria • DI ENS • PSL • CNRS</span>
60+
</div>
61+
<div class="author">
62+
<span class="name">Qinghua Liu</span>
63+
<span class="affiliation">OSU</span>
64+
</div>
65+
<div class="author">
66+
<span class="name">Themis Palpanas</span>
67+
<span class="affiliation">Université Paris Cité • IUF</span>
68+
</div>
69+
</div>
70+
71+
<nav>
72+
<ul>
73+
<li><a href="#overview">Overview</a></li>
74+
<li><a href="#modules">Modules</a></li>
75+
<li><a href="#speakers">Speakers</a></li>
76+
<li><a href="#contact">Contact</a></li>
77+
</ul>
78+
</nav>
79+
</header>
80+
81+
<div class="container">
82+
<section id="overview">
83+
<h2>Overview</h2>
84+
<p>
85+
Recent advances in data collection technology, accompanied by the ever-rising volume and velocity of streaming data, underscore the vital need for time series analytics. In this regard, time-series anomaly detection has been an important activity, entailing various applications in fields such as cyber security, financial markets, law enforcement, and health care. While traditional literature on anomaly detection is centered on statistical measures, the increasing number of machine learning algorithms in recent years call for a structured, general characterization of the research methods for time-series anomaly detection.
86+
In this paper, we present a process-centric taxonomy for time-series anomaly detection methods, systematically categorizing traditional statistical approaches and contemporary machine learning techniques. Beyond this taxonomy, we conduct a meta-analysis of the existing literature to identify broad research trends. Given the absence of a one-size-fits-all anomaly detector, we also introduce emerging trends for time-series anomaly detection. Furthermore, we review commonly used evaluation measures and benchmarks, followed by an analysis of benchmark results to provide insights into the impact of different design choices on model performance. Through these contributions, we aim to provide a holistic perspective on time-series anomaly detection and highlight promising avenues for future investigation.
87+
</p>
88+
<!-- <p>
89+
<a class="btn" href="TSAD_KDD25_Tutorial.pdf" target="_blank">Download Tutorial PDF</a>
90+
</p> -->
91+
</section>
92+
93+
<section id="modules">
94+
<h2>Tutorial Modules</h2>
95+
<ol class="module-list">
96+
<li><strong>Introduction & Anomaly Types</strong><br>Point, contextual, and collective anomalies in time series.</li>
97+
<li><strong>Process-Centric Taxonomy</strong><br>Distance-, density-, and prediction-based methods.</li>
98+
<li><strong>Evolution of Methods</strong><br>From statistical tests to deep learning and transformers.</li>
99+
<li><strong>Emerging Trends</strong><br>Foundation models, LLM prompting, meta-learning for model selection.</li>
100+
<li><strong>Evaluation Measures</strong><br>Point- vs. range-based metrics, AUC-PR/ROC, VUS.</li>
101+
<li><strong>Benchmarks & Best Practices</strong><br>TSB-AD and other benchmark suites; pitfalls and recommendations.</li>
102+
<li><strong>Discussion & Future Directions</strong><br>Open challenges, streaming and multivariate anomalies.</li>
103+
</ol>
104+
</section>
105+
106+
<section id="speakers">
107+
<h2>Speakers</h2>
108+
<ul>
109+
<li><strong>John Paparrizos</strong> — The Ohio State University</li>
110+
<li><strong>Paul Boniol</strong> — Inria, PSL</li>
111+
<li><strong>Qinghua Liu</strong> — The Ohio State University</li>
112+
<li><strong>Themis Palpanas</strong> — Université Paris Cité</li>
113+
</ul>
114+
</section>
115+
116+
<section id="contact">
117+
<h2>Contact & Registration</h2>
118+
<p>
119+
For questions or to register, please email <a href="mailto:[email protected]">[email protected]</a>.<br>
120+
<!-- Registration link: <a href="https://kdd.org/kdd2025/tutorials" target="_blank">KDD ’25 Tutorials Page</a>. -->
121+
</p>
122+
</section>
123+
</div>
124+
125+
<footer>
126+
<p>&copy; The DATUM Lab.</p>
127+
</footer>
128+
</body>
129+
</html>

0 commit comments

Comments
 (0)