Issue using ControlNet #1678
Unanswered
GigiGanzGross
asked this question in
Q&A
Replies: 1 comment
-
Sorry, it seems I placed the issue in the wrong region. I opened an issue. |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
Hi,
I'm having issues with ControlNet since the beginning. I had watched several youtube videos about the correct settings and had reinstalled all components several times, but always received the following error I don't know how to fix. Also see a screenshot attached. Please help, I am super hyped to try this tool :)
Error
`Loading preprocessor: canny
0% 0/53 [00:00<?, ?it/s]
Error completing request
Arguments: ('task(0c03rvifwzz84qy)', 0, 'Anime, detail, flower, garden', '', [], <PIL.Image.Image image mode=RGBA size=512x512 at 0x7F80132EDE80>, None, None, None, None, None, None, 70, 0, 4, 0, 1, False, False, 1, 1, 7, 1.5, 0.75, 42.0, -1.0, 0, 0, 0, False, 1024, 768, 0, 0, 32, 0, '', '', '', [], 0, True, True, 'canny', 'control_canny-fp16 [e3fe7712]', 1, {'image': array([[[239, 245, 242],
[239, 245, 249],
[238, 248, 249],
...,
[145, 149, 204],
[167, 164, 198],
[184, 177, 190]],
Traceback (most recent call last):
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 56, in f
res = list(func(*args, **kwargs))
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 37, in f
res = func(*args, **kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/img2img.py", line 171, in img2img
processed = process_images(p)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py", line 486, in process_images
res = process_images_inner(p)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py", line 632, in process_images_inner
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py", line 1048, in sample
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_kdiffusion.py", line 322, in sample_img2img
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_kdiffusion.py", line 225, in launch_sampling
return func()
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_kdiffusion.py", line 322, in
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "/usr/local/lib/python3.8/dist-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion/sampling.py", line 145, in sample_euler_ancestral
denoised = model(x, sigmas[i] * s_in, **extra_args)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_kdiffusion.py", line 117, in forward
x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion/external.py", line 167, in forward
return self.get_v(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip
File "/content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion/external.py", line 177, in get_v
return self.inner_model.apply_model(x, t, cond)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_hijack_utils.py", line 17, in
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_hijack_utils.py", line 28, in call
return self.__orig_func(*args, **kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/ldm/models/diffusion/ddpm.py", line 858, in apply_model
x_recon = self.model(x_noisy, t, **cond)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/ldm/models/diffusion/ddpm.py", line 1329, in forward
out = self.diffusion_model(x, t, context=cc)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/extensions/sd-webui-controlnet/scripts/hook.py", line 193, in forward2
return forward(*args, **kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/extensions/sd-webui-controlnet/scripts/hook.py", line 136, in forward
control = param.control_model(x=x_in, hint=param.hint_cond, timesteps=timesteps, context=context)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/extensions/sd-webui-controlnet/scripts/cldm.py", line 115, in forward
return self.control_model(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/extensions/sd-webui-controlnet/scripts/cldm.py", line 383, in forward
h = module(h, emb, context)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/ldm/modules/diffusionmodules/openaimodel.py", line 84, in forward
x = layer(x, context)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/ldm/modules/attention.py", line 334, in forward
x = block(x, context=context[i])
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/ldm/modules/attention.py", line 269, in forward
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
File "/content/gdrive/MyDrive/sd/stablediffusion/ldm/modules/diffusionmodules/util.py", line 114, in checkpoint
return CheckpointFunction.apply(func, len(inputs), *args)
File "/content/gdrive/MyDrive/sd/stablediffusion/ldm/modules/diffusionmodules/util.py", line 129, in forward
output_tensors = ctx.run_function(*ctx.input_tensors)
File "/content/gdrive/MyDrive/sd/stablediffusion/ldm/modules/attention.py", line 273, in _forward
x = self.attn2(self.norm2(x), context=context) + x
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_hijack_optimizations.py", line 332, in xformers_attention_forward
k_in = self.to_k(context_k)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/extensions-builtin/Lora/lora.py", line 178, in lora_Linear_forward
return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input))
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/linear.py", line 114, in forward
return F.linear(input, self.weight, self.bias)
RuntimeError: mat1 and mat2 shapes cannot be multiplied (154x1024 and 768x320)`
Beta Was this translation helpful? Give feedback.
All reactions