Replies: 1 comment 2 replies
-
problème lié à torch 2 je pense, A1111 a arrêté de mettre à jour son repo, donc il faudra attendre à une solution |
Beta Was this translation helpful? Give feedback.
2 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
bonjour , quand j'utilise l'option Hi Res Fix (tout le temps ) j'ai désormais un message d'erreur et un crash systématique
Traceback (most recent call last):
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 56, in f
res = list(func(*args, **kwargs))
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 37, in f
res = func(*args, **kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/txt2img.py", line 56, in txt2img
processed = process_images(p)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py", line 486, in process_images
res = process_images_inner(p)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py", line 636, in process_images_inner
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py", line 908, in sample
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_kdiffusion.py", line 324, in sample_img2img
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_kdiffusion.py", line 227, in launch_sampling
return func()
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_kdiffusion.py", line 324, in
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "/usr/local/lib/python3.9/dist-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion/sampling.py", line 145, in sample_euler_ancestral
denoised = model(x, sigmas[i] * s_in, **extra_args)
File "/usr/local/lib/python3.9/dist-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_kdiffusion.py", line 145, in forward
devices.test_for_nans(x_out, "unet")
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/devices.py", line 152, in test_for_nans
raise NansException(message)
modules.devices.NansException: A tensor with all NaNs was produced in Unet. This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try setting the "Upcast cross attention layer to float32" option in Settings > Stable Diffusion or using the --no-half commandline argument to fix this. Use --disable-nan-check commandline argument to disable this check.
Beta Was this translation helpful? Give feedback.
All reactions