@@ -618,12 +618,15 @@ def get_vocab_base_pre(self, tokenizer) -> str:
618618 if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" :
619619 # ref: https://huggingface.co/THUDM/glm-4-9b-chat
620620 res = "chatglm-bpe"
621+ if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516" :
622+ # ref: https://huggingface.co/THUDM/glm-4-9b-chat
623+ res = "chatglm-bpe"
621624 if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2" :
622625 # ref: https://huggingface.co/THUDM/glm-4-9b-hf
623626 res = "glm4"
624627 if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902" :
625628 # ref: https://huggingface.co/zai-org/GLM-4.5-Air, https://huggingface.co/zai-org/GLM-4.5
626- res = "gpt-2 "
629+ res = "glm4 "
627630 if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee" :
628631 # ref: https://huggingface.co/LumiOpen/Viking-7B
629632 res = "viking"
@@ -3961,33 +3964,32 @@ class Glm4MoeModel(Model):
39613964 def __init__ (self , * args , ** kwargs ):
39623965 super ().__init__ (* args , ** kwargs )
39633966 # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
3964- self .block_count = self .hparams ["num_hidden_layers" ] + 1
3967+ self .block_count = self .hparams ["num_hidden_layers" ] + self . hparams . get ( "num_nextn_predict_layers" , 0 )
39653968 self .tensor_map = gguf .get_tensor_name_map (self .model_arch , self .block_count )
3966-
3969+
39673970 def set_vocab (self ):
39683971 from transformers import AutoTokenizer
39693972
3970- tokenizer = AutoTokenizer .from_pretrained (
3971- self .dir_model , trust_remote_code = True
3972- )
3973+ tokenizer = AutoTokenizer .from_pretrained (self .dir_model )
39733974 special_vocab = gguf .SpecialVocab (self .dir_model , load_merges = True )
39743975 tokens , toktypes , tokpre = self .get_vocab_base ()
39753976 self .gguf_writer .add_tokenizer_model ("gpt2" )
39763977 self .gguf_writer .add_tokenizer_pre (tokpre )
39773978 self .gguf_writer .add_token_list (tokens )
39783979 self .gguf_writer .add_token_types (toktypes )
39793980
3980- # Set special tokens
3981- special_vocab ._set_special_token (
3982- "eos" , tokenizer .get_added_vocab ()["<|endoftext|>" ]
3983- )
3984- special_vocab ._set_special_token ("eot" , tokenizer .get_added_vocab ()["<|user|>" ])
3985- special_vocab ._set_special_token (
3986- "unk" , tokenizer .get_added_vocab ()["<|endoftext|>" ]
3987- )
3988- special_vocab ._set_special_token (
3989- "bos" , tokenizer .get_added_vocab ()["<|endoftext|>" ]
3990- )
3981+ # Special tokens
3982+ # Note: Using <|endoftext|> (151329) for eot causes endless generation
3983+ special_vocab ._set_special_token ("bos" , tokenizer .get_added_vocab ()["[gMASK]" ]) # 151331
3984+ special_vocab ._set_special_token ("eot" , tokenizer .get_added_vocab ()["<|user|>" ]) # 151336
3985+ special_vocab ._set_special_token ("unk" , tokenizer .get_added_vocab ()["<|endoftext|>" ]) # 151329
3986+ special_vocab ._set_special_token ("eom" , tokenizer .get_added_vocab ()["<|observation|>" ]) # 151338
3987+
3988+ # Patch broken chat template
3989+ if isinstance (special_vocab .chat_template , str ) and "visible_text(m.content).endswith" in special_vocab .chat_template :
3990+ special_vocab .chat_template = special_vocab .chat_template .replace (
3991+ """{{ visible_text(m.content) }}\n {{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""" ,
3992+ """{% set content = visible_text(m.content) %}{{ content }}\n {{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""" )
39913993
39923994 special_vocab .add_to_gguf (self .gguf_writer )
39933995
@@ -4001,10 +4003,9 @@ def set_gguf_parameters(self):
40014003 int (rope_dim * self .hparams .get ("partial_rotary_factor" , 0.5 ))
40024004 )
40034005
4004- # MoE parameters
4005- if (n_experts := self .hparams .get ("n_routed_experts" )) is not None :
4006- self .gguf_writer .add_expert_count (n_experts )
4007- # Note: expert_used_count is already set by parent class using num_experts_per_tok
4006+ # MoE parameters - Use only routed expert count (shared experts handled separately)
4007+ if (n_routed_experts := self .hparams .get ("n_routed_experts" )) is not None :
4008+ self .gguf_writer .add_expert_count (n_routed_experts )
40084009 if (moe_intermediate_size := self .hparams .get ("moe_intermediate_size" )) is not None :
40094010 self .gguf_writer .add_expert_feed_forward_length (moe_intermediate_size )
40104011 if (n_shared_experts := self .hparams .get ("n_shared_experts" )) is not None :
@@ -4023,8 +4024,11 @@ def set_gguf_parameters(self):
40234024 if (norm_topk_prob := self .hparams .get ("norm_topk_prob" )) is not None :
40244025 self .gguf_writer .add_expert_weights_norm (norm_topk_prob )
40254026
4027+ # NextN/MTP prediction layers
4028+ if (num_nextn_predict_layers := self .hparams .get ("num_nextn_predict_layers" )) is not None :
4029+ self .gguf_writer .add_nextn_predict_layers (num_nextn_predict_layers )
4030+
40264031 _experts : list [dict [str , Tensor ]] | None = None
4027- _shared_experts : list [dict [str , Tensor ]] | None = None
40284032
40294033 def modify_tensors (
40304034 self , data_torch : Tensor , name : str , bid : int | None
@@ -4035,21 +4039,17 @@ def modify_tensors(
40354039 name = name .replace ("language_model." , "" ) # for multimodal variants
40364040
40374041 # Handle main token embedding (but not layer-specific NextN embeddings)
4038- if name == "model.embed_tokens.weight" :
4042+ if name == "model.embed_tokens.weight" and ".layers." not in name :
40394043 return [(self .map_tensor_name ("token_embd.weight" ), data_torch )]
40404044
40414045 # Handle routed experts
4042- if name .find ("mlp.experts" ) != - 1 and "shared_experts" not in name :
4046+ if name .find ("mlp.experts" ) != - 1 :
40434047 n_experts = self .hparams ["n_routed_experts" ]
40444048 assert bid is not None
40454049
40464050 if self ._experts is None :
40474051 self ._experts = [{} for _ in range (self .block_count )]
40484052
4049- # Extend experts array if needed (for models where actual layers > num_hidden_layers)
4050- while len (self ._experts ) <= bid :
4051- self ._experts .append ({})
4052-
40534053 self ._experts [bid ][name ] = data_torch
40544054
40554055 if len (self ._experts [bid ]) >= n_experts * 3 :
@@ -4065,95 +4065,21 @@ def modify_tensors(
40654065 del self ._experts [bid ][ename ]
40664066
40674067 data_torch = torch .stack (datas , dim = 0 )
4068- # Generate GGUF tensor names for merged experts
4069- if w_name == "down_proj" :
4070- new_name = f"blk.{ bid } .ffn_down_exps.weight"
4071- elif w_name == "gate_proj" :
4072- new_name = f"blk.{ bid } .ffn_gate_exps.weight"
4073- elif w_name == "up_proj" :
4074- new_name = f"blk.{ bid } .ffn_up_exps.weight"
4075- else :
4076- merged_name = f"model.layers.{ bid } .mlp.experts.{ w_name } .weight"
4077- new_name = self .map_tensor_name (merged_name )
4068+
4069+ merged_name = f"model.layers.{ bid } .mlp.experts.{ w_name } .weight"
4070+
4071+ new_name = self .map_tensor_name (merged_name )
40784072 tensors .append ((new_name , data_torch ))
40794073 return tensors
40804074 else :
40814075 return []
40824076
4083- # Handle expert gating input (routing gate)
4084- if ".mlp.gate.e_score_correction_bias" in name :
4085- new_name = name .replace ("model.layers." , "blk." ).replace (
4086- ".mlp.gate.e_score_correction_bias" , ".ffn_gate_inp.bias" # *NOTE* this is ".exp_probs_b" in mainline PR
4087- )
4088- return [(new_name , data_torch )]
4089- elif ".mlp.gate.weight" in name :
4090- new_name = name .replace ("model.layers." , "blk." ).replace (
4091- ".mlp.gate.weight" , ".ffn_gate_inp.weight"
4092- )
4093- return [(new_name , data_torch )]
4094-
4095- # Handle shared expert tensors
4096- if ".mlp.shared_experts." in name :
4097- new_name = name .replace ("model.layers." , "blk." ).replace (".mlp.shared_experts." , ".ffn_" )
4098- if "gate_proj" in new_name :
4099- new_name = new_name .replace ("gate_proj" , "gate_shexp" )
4100- elif "down_proj" in new_name :
4101- new_name = new_name .replace ("down_proj" , "down_shexp" )
4102- elif "up_proj" in new_name :
4103- new_name = new_name .replace ("up_proj" , "up_shexp" )
4104- return [(new_name , data_torch )]
4105-
4106- # Handle regular dense FFN layers (for hybrid dense/MoE architecture)
4107- if ".mlp." in name and "experts" not in name and "_shexp" not in name :
4108- if "gate_proj" in name :
4109- new_name = name .replace ("model.layers." , "blk." ).replace (
4110- ".mlp.gate_proj.weight" , ".ffn_gate.weight"
4111- )
4112- elif "up_proj" in name :
4113- new_name = name .replace ("model.layers." , "blk." ).replace (
4114- ".mlp.up_proj.weight" , ".ffn_up.weight"
4115- )
4116- elif "down_proj" in name :
4117- new_name = name .replace ("model.layers." , "blk." ).replace (
4118- ".mlp.down_proj.weight" , ".ffn_down.weight"
4119- )
4120- else :
4121- new_name = name
4122- return [(self .map_tensor_name (new_name ), data_torch )]
4123-
4124- # Handle special NextN tensors - preserve for future MTP support - See https://github.com/ggml-org/llama.cpp/pull/13236
4125- if (
4126- ".embed_tokens." in name
4127- or ".shared_head." in name
4128- or ".eh_proj." in name
4129- or ".enorm." in name
4130- or ".hnorm." in name
4131- ):
4132- new_name = name .replace ("model.layers." , "blk." ).replace ("model." , "" ).replace (".weight" , "" )
4133- # logger.debug(f"Skipping MTP tensor: {new_name}")
4134- return [(new_name , data_torch )]
4135-
4136- # GLM tensor mapping - handle directly without map_tensor_name
4137- if ".input_layernorm." in name :
4138- new_name = name .replace ("model.layers." , "blk." ).replace (".input_layernorm." , ".attn_norm." )
4139- return [(new_name , data_torch )]
4140- elif ".post_attention_layernorm." in name :
4141- new_name = name .replace ("model.layers." , "blk." ).replace (".post_attention_layernorm." , ".ffn_norm." )
4142- return [(new_name , data_torch )]
4143- elif ".self_attn." in name :
4144- # Map GLM self_attn to standard attention naming
4145- new_name = name .replace ("model.layers." , "blk." ).replace (".self_attn." , ".attn_" )
4146- if "q_proj" in new_name :
4147- new_name = new_name .replace ("q_proj" , "q" )
4148- elif "k_proj" in new_name :
4149- new_name = new_name .replace ("k_proj" , "k" )
4150- elif "v_proj" in new_name :
4151- new_name = new_name .replace ("v_proj" , "v" )
4152- elif "o_proj" in new_name :
4153- new_name = new_name .replace ("o_proj" , "output" )
4154- return [(new_name , data_torch )]
4077+ if name .endswith ("e_score_correction_bias" ):
4078+ name = name .replace ("e_score_correction_bias" , "e_score_correction.bias" )
41554079
4156- return super ().modify_tensors (data_torch , name , bid )
4080+ new_name = self .map_tensor_name (name )
4081+
4082+ return [(new_name , data_torch )]
41574083
41584084 def prepare_tensors (self ):
41594085 super ().prepare_tensors ()
0 commit comments