1+ #include " common.h"
12#include " arg.h"
2- #include " log.h"
33#include " ggml.h"
44#include " llama.h"
55#include " common.h"
6- #include " ../src/llama-vocab.h"
6+ // #include "llama-vocab.h"
7+ #include " log.h"
78
89#ifdef _WIN32
910#define WIN32_LEAN_AND_MEAN
2021#include < vector>
2122
2223static void print_usage (int , char ** argv) {
23- LOG_INF (" \n example usage:\n " );
24- LOG_INF (" \n %s -m model.gguf -c 8192 -b 2048 -ub 512\n " , argv[0 ]);
25- LOG_INF (" \n " );
24+ LOG (" \n example usage:\n " );
25+ LOG (" \n %s -m model.gguf -c 8192 -b 2048 -ub 512\n " , argv[0 ]);
26+ LOG (" \n " );
2627}
2728
2829int main (int argc, char ** argv) {
29- common_params params;
3030
31- if (!common_params_parse (argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
31+ std::vector<char *> args;
32+ args.reserve (argc);
33+ args.push_back (argv[0 ]);
34+
35+ bool sweep_bench_output_jsonl = false ;
36+
37+ for (int i = 1 ; i < argc; ++i) {
38+ std::string arg{argv[1 ]};
39+ if (arg == " --output-format" ) {
40+ bool invalid_arg = false ;
41+ if (i < argc-1 ) {
42+ arg = argv[++i];
43+ if (arg == " jsonl" ) sweep_bench_output_jsonl = true ;
44+ else if (arg == " md" ) sweep_bench_output_jsonl = false ;
45+ else invalid_arg = true ;
46+ } else {
47+ invalid_arg = true ;
48+ }
49+ if (invalid_arg) {
50+ LOG (" Invalid arg" ); return 1 ;
51+ }
52+ } else {
53+ args.push_back (argv[i]);
54+ }
55+ }
56+
57+ common_params params;
58+ if (!common_params_parse (args.size (), args.data (), params, LLAMA_EXAMPLE_BENCH, print_usage)) {
3259 return 1 ;
3360 }
3461
3562 common_init ();
3663
64+ // gpt_params params;
65+
66+ // if (!gpt_params_parse(argc, argv, params)) {
67+ // print_usage(argc, argv);
68+ // return 1;
69+ // }
70+
3771 // init LLM
72+
3873 llama_backend_init ();
3974 llama_numa_init (params.numa );
4075
4176 // initialize the model
42- common_init_result llama_init = common_init_from_params (params);
4377
44- llama_model * model = llama_init.model .get ();
45- llama_context * ctx = llama_init.context .get ();
78+ // llama_model_params model_params = llama_model_params_from_gpt_params(params);
79+ llama_model_params model_params = common_model_params_to_llama (params);
80+
81+ // llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
82+ llama_model * model = llama_model_load_from_file (params.model .path .c_str (), model_params);
4683
47- if (model == nullptr || ctx == nullptr ) {
48- LOG_ERR ( " %s : failed to init \n " , __func__);
84+ if (model == NULL ) {
85+ fprintf (stderr , " %s: error: unable to load model \n " , __func__);
4986 return 1 ;
5087 }
5188
52- // print system information
53- {
54- LOG_INF (" \n " );
55- LOG_INF (" %s\n " , common_params_get_system_info (params).c_str ());
56- LOG_INF (" \n " );
89+ // llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
90+ llama_context_params ctx_params = common_context_params_to_llama (params);
91+
92+ // llama_context * ctx = llama_new_context_with_model(model, ctx_params);
93+ llama_context * ctx = llama_init_from_model (model, ctx_params);
94+
95+ if (ctx == NULL ) {
96+ fprintf (stderr , " %s: error: failed to create the llama_context\n " , __func__);
97+ return 1 ;
5798 }
5899
59100 const unsigned int n_kv_max = llama_n_ctx (ctx);
60101
61- const llama_vocab * vocab = llama_model_get_vocab (model);
62- llama_token bos = vocab->token_bos ();
63- const unsigned int n_vocab = llama_vocab_n_tokens (vocab);
64102
65- // decode in batches of n_batch tokens
103+ auto vocab = llama_model_get_vocab (model);
104+ auto n_vocab = llama_vocab_n_tokens (vocab);
105+ auto bos = llama_vocab_bos (vocab);
106+
107+ // const llama_vocab * vocab = llama_get_vocab(ctx);
108+ // llama_token bos = llama_token_bos_impl(*vocab);
109+ // llama_token eos = llama_token_eos_impl(*vocab);
110+
111+ // const unsigned int n_vocab = llama_n_vocab(model);
112+
113+ // decode in batches of ctx_params.n_batch tokens
66114 auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
67115 for (int32_t i = 0 ; i < (int32_t ) batch.n_tokens ; i += n_batch) {
68116 const int32_t n_tokens = std::min (n_batch, (int32_t ) (batch.n_tokens - i));
@@ -92,43 +140,45 @@ int main(int argc, char ** argv) {
92140 const unsigned int pp = params.n_ubatch ;
93141 const unsigned int tg = params.n_ubatch / 4 ;
94142
95- const unsigned int n_threads = params.cpuparams .n_threads ;
96- const unsigned int n_threads_batch = params.cpuparams_batch .n_threads ;
97- const int32_t n_batch = llama_n_batch (ctx);
98-
99- LOG_INF (" \n " );
100- LOG_INF (" %s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n " , __func__, n_kv_max, params.n_batch , params.n_ubatch , params.flash_attn , params.n_gpu_layers , n_threads, n_threads_batch);
101- LOG_INF (" \n " );
102- LOG_INF (" |%6s | %6s | %6s | %8s | %8s | %8s | %8s |\n " , " PP" , " TG" , " N_KV" , " T_PP s" , " S_PP t/s" , " T_TG s" , " S_TG t/s" );
103- LOG_INF (" |%6s-|-%6s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|\n " , " ------" , " ------" , " ------" , " --------" , " --------" , " --------" , " --------" );
143+ if (!sweep_bench_output_jsonl) {
144+ LOG_INF (" \n " );
145+ LOG_INF (" %s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n " , __func__, n_kv_max, params.n_batch , params.n_ubatch , params.flash_attn , params.n_gpu_layers , ctx_params.n_threads , ctx_params.n_threads_batch );
146+ LOG_INF (" \n " );
147+ LOG_INF (" |%6s | %6s | %6s | %8s | %8s | %8s | %8s |\n " , " PP" , " TG" , " N_KV" , " T_PP s" , " S_PP t/s" , " T_TG s" , " S_TG t/s" );
148+ LOG_INF (" |%6s-|-%6s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|\n " , " ------" , " ------" , " ------" , " --------" , " --------" , " --------" , " --------" );
149+ }
104150
105151 llama_batch batch = llama_batch_init (n_kv_max, 0 , 1 );
106152
107153 // warm up
108154 {
109155 common_batch_add (batch, bos, 0 , { 0 }, false );
156+ // llama_batch_add(batch, bos, 0, { 0 }, false);
110157
111- if (!decode_helper (ctx, batch, n_batch)) {
158+ if (!decode_helper (ctx, batch, ctx_params. n_batch )) {
112159 LOG_INF (" %s: llama_decode() failed\n " , __func__);
113160 return 1 ;
114161 }
115162 }
116163
117164 common_batch_clear (batch);
165+ // llama_batch_clear(batch);
118166 llama_kv_self_clear (ctx);
119167
120168 for (unsigned int n_kv = 0 ; n_kv < n_kv_max; n_kv += params.n_ubatch ) {
121169 // clean up KV cache before generation
122- llama_kv_self_seq_rm (ctx, 0 ,n_kv, -1 );
170+ llama_kv_self_seq_rm (ctx, 0 , n_kv, -1 );
123171
124172 // first measure token generation performance at this context size
125173 const auto t_tg_start = ggml_time_us ();
126174
127175 for (unsigned int i = 0 ; i < tg; ++i) {
128176 common_batch_clear (batch);
129177 common_batch_add (batch, std::rand () % n_vocab, n_kv + i, { 0 }, true );
178+ // llama_batch_clear(batch);
179+ // llama_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, true);
130180
131- if (!decode_helper (ctx, batch, n_batch)) {
181+ if (!decode_helper (ctx, batch, ctx_params. n_batch )) {
132182 LOG_INF (" %s: llama_decode() failed\n " , __func__);
133183 return 1 ;
134184 }
@@ -141,16 +191,18 @@ int main(int argc, char ** argv) {
141191
142192 // prepare batch of pp size for prompt processing performance measurement
143193 common_batch_clear (batch);
194+ // llama_batch_clear(batch);
144195
145196 for (unsigned int i = 0 ; i < pp; ++i) {
146197 common_batch_add (batch, std::rand () % n_vocab, n_kv + i, { 0 }, false );
198+ // llama_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, false);
147199 }
148200 batch.logits [batch.n_tokens - 1 ] = true ;
149201
150202 // measure prompt processing performance
151203 const auto t_pp_start = ggml_time_us ();
152204
153- if (!decode_helper (ctx, batch, n_batch)) {
205+ if (!decode_helper (ctx, batch, ctx_params. n_batch )) {
154206 LOG_INF (" %s: llama_decode() failed\n " , __func__);
155207 return 1 ;
156208 }
@@ -164,9 +216,23 @@ int main(int argc, char ** argv) {
164216 const float speed_pp = pp / t_pp;
165217 const float speed_tg = tg / t_tg;
166218
167- LOG_INF (" |%6d | %6d | %6d | %8.3f | %8.2f | %8.3f | %8.2f |\n " , pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg);
219+ if (sweep_bench_output_jsonl) {
220+ LOG_INF (
221+ " {\" n_kv_max\" : %d, \" n_batch\" : %d, \" n_ubatch\" : %d, \" flash_attn\" : %d, \" n_gpu_layers\" : %d, \" n_threads\" : %u, \" n_threads_batch\" : %u, "
222+ " \" pp\" : %d, \" tg\" : %d, \" n_kv\" : %d, \" t_pp\" : %f, \" speed_pp\" : %f, \" t_tg\" : %f, \" speed_tg\" : %f }\n " ,
223+ n_kv_max, params.n_batch , params.n_ubatch , params.flash_attn , params.n_gpu_layers , ctx_params.n_threads , ctx_params.n_threads_batch ,
224+ pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg
225+ );
226+ } else {
227+ LOG_INF (" |%6d | %6d | %6d | %8.3f | %8.2f | %8.3f | %8.2f |\n " , pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg);
228+ }
168229 }
169230
231+ llama_batch_free (batch);
232+
233+ llama_free (ctx);
234+ llama_model_free (model);
235+
170236 llama_backend_free ();
171237
172238 return 0 ;
0 commit comments