@@ -487,18 +487,21 @@ def evaluate(model, data_loader, cfg, device, logger=None, **kwargs):
487487 # outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
488488 model_time = time .time () - model_time
489489
490- outputs = outputs .cpu ().detach ().numpy ()
490+ # outputs = outputs.cpu().detach().numpy()
491491 res = {}
492- for img , target , output in zip (images , targets , outputs ):
492+ # for img, target, output in zip(images, targets, outputs):
493+ for img , target , (boxes , confs ) in zip (images , targets , outputs ):
493494 img_height , img_width = img .shape [:2 ]
494- boxes = output [...,:4 ].copy () # output boxes in yolo format
495+ # boxes = output[...,:4].copy() # output boxes in yolo format
496+ boxes = boxes .cpu ().detach ().numpy ()
495497 boxes [...,:2 ] = boxes [...,:2 ] - boxes [...,2 :]/ 2 # to coco format
496498 boxes [...,0 ] = boxes [...,0 ]* img_width
497499 boxes [...,1 ] = boxes [...,1 ]* img_height
498500 boxes [...,2 ] = boxes [...,2 ]* img_width
499501 boxes [...,3 ] = boxes [...,3 ]* img_height
500502 boxes = torch .as_tensor (boxes , dtype = torch .float32 )
501- confs = output [...,4 :].copy ()
503+ # confs = output[...,4:].copy()
504+ confs = confs .cpu ().detach ().numpy ()
502505 labels = np .argmax (confs , axis = 1 ).flatten ()
503506 labels = torch .as_tensor (labels , dtype = torch .int64 )
504507 scores = np .max (confs , axis = 1 ).flatten ()
0 commit comments