@@ -467,8 +467,8 @@ class vamana_index {
467467
468468  template  <query_vector_array Q>
469469  auto  best_first_O2 (
470-       const  Q& queries, size_t  k_nn, std::optional<size_t > opt_L ) {
471-     size_t  Lbuild = opt_L  ? *opt_L  : l_build_;
470+       const  Q& queries, size_t  k_nn, std::optional<size_t > l_search ) {
471+     size_t  Lbuild = l_search  ? *l_search  : l_build_;
472472
473473    auto  top_k = ColMajorMatrix<id_type>(k_nn, ::num_vectors (queries));
474474    auto  top_k_scores =
@@ -494,8 +494,8 @@ class vamana_index {
494494
495495  template  <query_vector_array Q>
496496  auto  best_first_O3 (
497-       const  Q& queries, size_t  k_nn, std::optional<size_t > opt_L ) {
498-     size_t  Lbuild = opt_L  ? *opt_L  : l_build_;
497+       const  Q& queries, size_t  k_nn, std::optional<size_t > l_search ) {
498+     size_t  Lbuild = l_search  ? *l_search  : l_build_;
499499
500500    auto  top_k = ColMajorMatrix<id_type>(k_nn, ::num_vectors (queries));
501501    auto  top_k_scores =
@@ -521,8 +521,8 @@ class vamana_index {
521521
522522  template  <query_vector_array Q>
523523  auto  best_first_O4 (
524-       const  Q& queries, size_t  k_nn, std::optional<size_t > opt_L ) {
525-     size_t  Lbuild = opt_L  ? *opt_L  : l_build_;
524+       const  Q& queries, size_t  k_nn, std::optional<size_t > l_search ) {
525+     size_t  Lbuild = l_search  ? *l_search  : l_build_;
526526
527527    auto  top_k = ColMajorMatrix<id_type>(k_nn, ::num_vectors (queries));
528528    auto  top_k_scores =
@@ -548,8 +548,8 @@ class vamana_index {
548548
549549  template  <query_vector_array Q>
550550  auto  best_first_O5 (
551-       const  Q& queries, size_t  k_nn, std::optional<size_t > opt_L ) {
552-     size_t  Lbuild = opt_L  ? *opt_L  : l_build_;
551+       const  Q& queries, size_t  k_nn, std::optional<size_t > l_search ) {
552+     size_t  Lbuild = l_search  ? *l_search  : l_build_;
553553
554554    auto  top_k = ColMajorMatrix<id_type>(k_nn, ::num_vectors (queries));
555555    auto  top_k_scores =
@@ -578,18 +578,18 @@ class vamana_index {
578578   * @tparam Q Type of query set 
579579   * @param query_set Container of query vectors 
580580   * @param k How many nearest neighbors to return 
581-    * @param opt_L  How deep to search 
581+    * @param l_search  How deep to search 
582582   * @return Tuple of top k scores and top k ids 
583583   */  
584584  template  <query_vector_array Q, class  Distance  = sum_of_squares_distance>
585585  auto  query (
586586      const  Q& query_set,
587587      size_t  k,
588-       std::optional<size_t > opt_L  = std::nullopt ,
588+       std::optional<size_t > l_search  = std::nullopt ,
589589      Distance distance = Distance{}) {
590590    scoped_timer __{tdb_func__ + std::string{"  (outer)"  }};
591591
592-     size_t  L = opt_L  ? *opt_L  : l_build_;
592+     size_t  L = l_search  ? *l_search  : l_build_;
593593    //  L = std::min<size_t>(L, l_build_);
594594
595595    auto  top_k = ColMajorMatrix<id_type>(k, ::num_vectors (query_set));
@@ -646,16 +646,16 @@ class vamana_index {
646646   * @tparam Q Type of query vector 
647647   * @param query_vec The vector to query 
648648   * @param k How many nearest neighbors to return 
649-    * @param opt_L  How deep to search 
649+    * @param l_search  How deep to search 
650650   * @return Top k scores and top k ids 
651651   */  
652652  template  <query_vector Q, class  Distance  = sum_of_squares_distance>
653653  auto  query (
654654      const  Q& query_vec,
655655      size_t  k,
656-       std::optional<size_t > opt_L  = std::nullopt ,
656+       std::optional<size_t > l_search  = std::nullopt ,
657657      Distance distance = Distance{}) {
658-     size_t  L = opt_L  ? *opt_L  : l_build_;
658+     size_t  L = l_search  ? *l_search  : l_build_;
659659    auto && [top_k_scores, top_k, V] = greedy_search (
660660        graph_, feature_vectors_, medoid_, query_vec, k, L, distance, true );
661661
0 commit comments