-
Notifications
You must be signed in to change notification settings - Fork 19
Open
Description
In the baseline code following code section
output_file = f'{OUT_DIR}/raw/file_map.dat'
output_info = joblib.load(output_file)
semantic_predictions = []
composition_predictions = []
for input_file, output_root in tqdm(output_info):
img = cv2.imread(input_file)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
np_map = np.load(f'{output_root}.raw.0.npy')
hv_map = np.load(f'{output_root}.raw.1.npy')
tp_map = np.load(f'{output_root}.raw.2.npy')
pred_map = process_segmentation(np_map, hv_map, tp_map)
type_freqs = process_composition(pred_map)
semantic_predictions.append(pred_map)
composition_predictions.append(type_freqs)
semantic_predictions = np.array(semantic_predictions)
composition_predictions = np.array(composition_predictions)
I am getting this error
0%| | 0/1018 [00:00<?, ?it/s]
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
Cell In[27], line 14
11 tp_map = np.load(f'{output_root}.raw.2.npy')
13 pred_map = process_segmentation(np_map, hv_map, tp_map)
---> 14 type_freqs = process_composition(pred_map)
15 semantic_predictions.append(pred_map)
16 composition_predictions.append(type_freqs)
Cell In[25], line 21, in process_composition(pred_map)
18 # ! not all types exist within the same spatial location
19 # ! so we have to create a placeholder and put them there
20 type_freqs = np.zeros(NUM_TYPES)
---> 21 type_freqs[type_freqs_[0]] = type_freqs_[1]
22 return type_freqs
IndexError: index 250 is out of bounds for axis 0 with size 7
Because the type_map is giving out array numbers like these
([ 0, 250, 252, 253], dtype=int32) in place of 1-6.
Metadata
Metadata
Assignees
Labels
No labels