|
| 1 | +import random |
| 2 | +import time |
| 3 | + |
| 4 | +import adafruit_imageload.bmp |
| 5 | +import audioio |
| 6 | +import audiomp3 |
| 7 | +import board |
| 8 | +import displayio |
| 9 | +import digitalio |
| 10 | +import framebufferio |
| 11 | +import rgbmatrix |
| 12 | + |
| 13 | +displayio.release_displays() |
| 14 | + |
| 15 | +matrix = rgbmatrix.RGBMatrix( |
| 16 | + width=64, height=32, bit_depth=4, |
| 17 | + rgb_pins=[board.D6, board.D5, board.D9, board.D11, board.D10, board.D12], |
| 18 | + addr_pins=[board.A5, board.A4, board.A3, board.A2], |
| 19 | + clock_pin=board.D13, latch_pin=board.D0, output_enable_pin=board.D1) |
| 20 | +display = framebufferio.FramebufferDisplay(matrix, auto_refresh=False) |
| 21 | + |
| 22 | +# Each wheel can be in one of three states: |
| 23 | +STOPPED, RUNNING, BRAKING = range(3) |
| 24 | + |
| 25 | +# Return a duplicate of the input list in a random (shuffled) order. |
| 26 | +def shuffled(seq): |
| 27 | + return sorted(seq, key=lambda _: random.random()) |
| 28 | + |
| 29 | +# The Wheel class manages the state of one wheel. "pos" is a position in |
| 30 | +# floating point coordinates, with one 1 pixel being 1 position. |
| 31 | +# The wheel also has a velocity (in positions |
| 32 | +# per tick) and a state (one of the above constants) |
| 33 | +class Wheel(displayio.TileGrid): |
| 34 | + def __init__(self, bitmap, palette): |
| 35 | + # Portions of up to 3 tiles are visible. |
| 36 | + super().__init__(bitmap=bitmap, pixel_shader=palette, |
| 37 | + width=1, height=3, tile_width=20, tile_height=24) |
| 38 | + self.order = shuffled(range(20)) |
| 39 | + self.state = STOPPED |
| 40 | + self.pos = 0 |
| 41 | + self.vel = 0 |
| 42 | + self.termvel = 2 |
| 43 | + self.y = 0 |
| 44 | + self.x = 0 |
| 45 | + self.stop_time = time.monotonic_ns() |
| 46 | + self.step() |
| 47 | + |
| 48 | + def step(self): |
| 49 | + # Update each wheel for one time step |
| 50 | + if self.state == RUNNING: |
| 51 | + # Slowly lose speed when running, but go at least terminal velocity |
| 52 | + self.vel = max(self.vel * .99, self.termvel) |
| 53 | + if time.monotonic_ns() > self.stop_time: |
| 54 | + self.state = BRAKING |
| 55 | + elif self.state == BRAKING: |
| 56 | + # More quickly lose speed when baking, down to speed 0.4 |
| 57 | + self.vel = max(self.vel * .85, 0.4) |
| 58 | + |
| 59 | + # Advance the wheel according to the velocity, and wrap it around |
| 60 | + # after 24*20 positions |
| 61 | + self.pos = (self.pos + self.vel) % (20*24) |
| 62 | + |
| 63 | + # Compute the rounded Y coordinate |
| 64 | + yy = round(self.pos) |
| 65 | + # Compute the offset of the tile (tiles are 24 pixels tall) |
| 66 | + yyy = yy % 24 |
| 67 | + # Find out which tile is the top tile |
| 68 | + off = yy // 24 |
| 69 | + |
| 70 | + # If we're braking and a tile is close to midscreen, |
| 71 | + # then stop and make sure that tile is exactly centered |
| 72 | + if self.state == BRAKING and self.vel <= 2 and yyy < 8: |
| 73 | + self.pos = off * 24 |
| 74 | + self.vel = 0 |
| 75 | + yyy = 0 |
| 76 | + self.state = STOPPED |
| 77 | + |
| 78 | + # Move the displayed tiles to the correct height and make sure the |
| 79 | + # correct tiles are displayed. |
| 80 | + self.y = yyy - 20 |
| 81 | + for i in range(3): |
| 82 | + self[i] = self.order[(19 - i + off) % 20] |
| 83 | + |
| 84 | + # Set the wheel running again, using a slight bit of randomness. |
| 85 | + # The 'i' value makes sure the first wheel brakes first, the second |
| 86 | + # brakes second, and the third brakes third. |
| 87 | + def kick(self, i): |
| 88 | + self.state = RUNNING |
| 89 | + self.vel = random.uniform(8, 10) |
| 90 | + self.termvel = random.uniform(1.8, 4.2) |
| 91 | + self.stop_time = time.monotonic_ns() + 3000000000 + i * 350000000 |
| 92 | + |
| 93 | + |
| 94 | +# This bitmap contains the emoji we're going to use. It is assumed |
| 95 | +# to contain 20 icons, each 20x24 pixels. This fits nicely on the 64x32 |
| 96 | +# RGB matrix display. |
| 97 | +the_bitmap, the_palette = adafruit_imageload.load( |
| 98 | + "/emoji.bmp", |
| 99 | + bitmap=displayio.Bitmap, |
| 100 | + palette=displayio.Palette) |
| 101 | + |
| 102 | +# Our fruit machine has 3 wheels, let's create them with a correct horizontal |
| 103 | +# (x) offset and arbitrary vertical (y) offset. |
| 104 | +g = displayio.Group(max_size=3) |
| 105 | +wheels = [] |
| 106 | +for idx in range(3): |
| 107 | + wheel = Wheel(the_bitmap, the_palette) |
| 108 | + wheel.x = idx * 22 |
| 109 | + wheel.y = -20 |
| 110 | + g.append(wheel) |
| 111 | + wheels.append(wheel) |
| 112 | +display.show(g) |
| 113 | + |
| 114 | +# We want a digital input to trigger the fruit machine |
| 115 | +button = digitalio.DigitalInOut(board.A1) |
| 116 | +button.switch_to_input(pull=digitalio.Pull.UP) |
| 117 | + |
| 118 | +# Enable the speaker |
| 119 | +enable = digitalio.DigitalInOut(board.D4) |
| 120 | +enable.switch_to_output(True) |
| 121 | + |
| 122 | +mp3file = open("/triangles-loop.mp3", "rb") |
| 123 | +sample = audiomp3.MP3Decoder(mp3file) |
| 124 | + |
| 125 | +# Play the sample (just loop it for now) |
| 126 | +speaker = audioio.AudioOut(board.A0) |
| 127 | +speaker.play(sample, loop=True) |
| 128 | + |
| 129 | +# Here's the main loop |
| 130 | +while True: |
| 131 | + # Refresh the dislpay (doing this manually ensures the wheels move |
| 132 | + # together, not at different times) |
| 133 | + display.refresh(minimum_frames_per_second=0, target_frames_per_second=60) |
| 134 | + |
| 135 | + all_stopped = all(si.state == STOPPED for si in wheels) |
| 136 | + if all_stopped: |
| 137 | + # Once everything comes to a stop, wait until the lever is pulled and |
| 138 | + # start everything over again. Maybe you want to check if the |
| 139 | + # combination is a "winner" and add a light show or something. |
| 140 | + |
| 141 | + while button.value: |
| 142 | + pass |
| 143 | + for idx, si in enumerate(wheels): |
| 144 | + si.kick(idx) |
| 145 | + |
| 146 | + # Otherwise, let the wheels keep spinning... |
| 147 | + for idx, si in enumerate(wheels): |
| 148 | + si.step() |
0 commit comments