33\import{macros}
44
55\p{The tabulator #{\top P} of a profunctor #{P: \cat{C} \proto \cat{D}} is its
6- \nlab{category of elements}, defined such that there are projection functors
7- #{\top P \to \cat{C}} and #{\top P \to \cat{D}}. Spelling this out, an object of
8- #{\top P} is a triple #{(c,d,p)} such that #{c \in \cat{C}}, #{d \in \cat{D}},
9- and #{p \in P(c,d)}, and a morphism #{(c,d,p) \to (c',d',p')} in #{\top P}
10- consists of a morphisms #{f: c \to c'} and #{g: d \to d'} such that the square
11- commutes:
6+ \nlab{category of elements}, defined such that there are \em{covariant}
7+ projection functors #{\top P \to \cat{C}} and #{\top P \to \cat{D}}. Spelling
8+ this out, an object of #{\top P} is a triple #{(c,d,p)} such that #{c \in
9+ \cat{C}}, #{d \in \cat{D}}, and #{p \in P(c,d)}, and a morphism #{(c,d,p) \to
10+ (c',d',p')} in #{\top P} consists of morphisms #{f: c \to c'} and #{g: d \to d'}
11+ such that the square commutes:
1212
1313\quiver{
1414% https://q.uiver.app/#q=WzAsNCxbMCwwLCJjIl0sWzEsMCwiZCJdLFsxLDEsImQnIl0sWzAsMSwiYyciXSxbMCwxLCJwIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzEsMiwiZyJdLFswLDMsImYiLDJdLFszLDIsInAnIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d
@@ -22,5 +22,5 @@ commutes:
2222\end{tikzcd}
2323}}
2424
25- \p{Be warned that this is only of four possible ways to define the
26- \nlab{graph of a profunctor}, as discussed on the nLab.}
25+ \p{Be warned that this is only one of four possible ways to define the
26+ \nlab{graph of a profunctor}, as discussed on nLab.}
0 commit comments