Skip to content

Commit 32ef75e

Browse files
committed
Add DiagonalSparseTensor with the default fallback to dense mechanism.
1 parent aff0abc commit 32ef75e

File tree

2 files changed

+137
-0
lines changed

2 files changed

+137
-0
lines changed
Lines changed: 103 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,103 @@
1+
import torch
2+
from torch import Tensor
3+
from torch.utils._pytree import tree_map
4+
5+
6+
class DiagonalSparseTensor(torch.Tensor):
7+
8+
@staticmethod
9+
def __new__(cls, data: Tensor, v_to_p: list[int]):
10+
# At the moment, this class is not compositional, so we assert
11+
# that the tensor we're wrapping is exactly a Tensor
12+
assert type(data) is Tensor
13+
14+
# Note [Passing requires_grad=true tensors to subclasses]
15+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16+
# Calling _make_subclass directly in an autograd context is
17+
# never the right thing to do, as this will detach you from
18+
# the autograd graph. You must create an autograd function
19+
# representing the "constructor" (NegativeView, in this case)
20+
# and call that instead. This assert helps prevent direct usage
21+
# (which is bad!)
22+
assert not data.requires_grad or not torch.is_grad_enabled()
23+
24+
# There is something very subtle going on here. In particular,
25+
# suppose that elem is a view. Does all of the view metadata
26+
# (sizes, strides, storages) get propagated correctly? Yes!
27+
# Internally, the way _make_subclass works is it creates an
28+
# alias (using Tensor.alias) of the original tensor, which
29+
# means we replicate storage/strides, but with the Python object
30+
# as an instance of your subclass. In other words,
31+
# _make_subclass is the "easy" case of metadata propagation,
32+
# because anything that alias() propagates, you will get in
33+
# your subclass. It is _make_wrapper_subclass which is
34+
# problematic...
35+
#
36+
# TODO: We need to think about how we want to turn this into
37+
# official API. I am thinking that something that does the
38+
# assert above and this call could be made into a utility function
39+
# that is in the public API
40+
return Tensor._make_wrapper_subclass(
41+
cls, [data.shape[i] for i in v_to_p], dtype=data.dtype, device=data.device
42+
)
43+
44+
def __init__(self, data: Tensor, v_to_p: list[int]):
45+
"""
46+
Represent a diagonal sparse tensor.
47+
48+
:param data: The physical contiguous data.
49+
:param v_to_p: Maps virtual dimensions to physical dimensions.
50+
51+
An example is `data` of shape `[d_1, d_2, d_3]` and `v_to_p` equal to `[0, 1, 0, 2, 1]`
52+
means the virtual shape is `[d_1, d_2, d_1, d_3, d_2]` and the represented Tensor, indexed
53+
at `[i, j, k, l, m]` is `0.` unless `i==k` and `j==m`.
54+
"""
55+
# Deliberate omission of `super().__init__()` as we have an unfaithful data.
56+
self._data = data
57+
self._v_to_p = v_to_p
58+
self._v_shape = tuple(data.shape[i] for i in v_to_p)
59+
60+
def to_dense(self) -> Tensor:
61+
first_indices = dict[int, int]()
62+
identity_matrices = dict[int, Tensor]()
63+
einsum_args: list[Tensor | list[int]] = [self._data, list(range(self._data.ndim))]
64+
output_indices = list(range(len(self._v_to_p)))
65+
for i, j in enumerate(self._v_to_p):
66+
if j not in first_indices:
67+
first_indices[j] = i
68+
else:
69+
if j not in identity_matrices:
70+
device = self._data.device
71+
dtype = self._data.dtype
72+
identity_matrices[j] = torch.eye(self._v_shape[i], device=device, dtype=dtype)
73+
einsum_args += [identity_matrices[j], [first_indices[j], i]]
74+
75+
output = torch.einsum(*einsum_args, output_indices)
76+
return output
77+
78+
@classmethod
79+
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
80+
kwargs = kwargs if kwargs else {}
81+
82+
# TODO: Handle batched operations (apply to self._data and wrap)
83+
# TODO: Handle all operations that can be represented with an einsum by translating them
84+
# to operations on self._data and wrapping accordingly.
85+
86+
# --- Fallback: Fold to Dense Tensor ---
87+
def unwrap_to_dense(t):
88+
if isinstance(t, cls):
89+
return t.to_dense()
90+
else:
91+
return t
92+
93+
print(f"Falling back to dense for {func.__name__}...")
94+
return func(*tree_map(unwrap_to_dense, args), **tree_map(unwrap_to_dense, kwargs))
95+
96+
def __repr__(self):
97+
return (
98+
f"DiagonalSparseTensor(\n"
99+
f" data={self._data},\n"
100+
f" v_to_p_map={self._v_to_p},\n"
101+
f" shape={self._v_shape}\n"
102+
f")"
103+
)
Lines changed: 34 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,34 @@
1+
import torch
2+
from pytest import mark
3+
from torch.testing import assert_close
4+
5+
from torchjd.autogram.diagonal_sparse_tensor import DiagonalSparseTensor
6+
7+
8+
@mark.parametrize(
9+
"shape",
10+
[
11+
[],
12+
[1],
13+
[3],
14+
[1, 1],
15+
[1, 4],
16+
[3, 1],
17+
[1, 2, 3],
18+
],
19+
)
20+
def test_diagonal_spase_tensor_scalar(shape: list[int]):
21+
a = torch.randn(shape)
22+
b = DiagonalSparseTensor(a, list(range(len(shape))))
23+
24+
assert_close(a, b)
25+
26+
27+
@mark.parametrize("dim", [1, 2, 3, 4, 5, 10])
28+
def test_diag_equivalence(dim: int):
29+
a = torch.randn([dim])
30+
b = DiagonalSparseTensor(a, [0, 0])
31+
32+
diag_a = torch.diag(a)
33+
34+
assert_close(b, diag_a)

0 commit comments

Comments
 (0)