You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|[UPGrad](https://torchjd.org/stable/docs/aggregation/upgrad/) (recommended) |[Jacobian Descent For Multi-Objective Optimization](https://arxiv.org/pdf/2406.16232)|
116
-
|[AlignedMTL](https://torchjd.org/stable/docs/aggregation/aligned_mtl/)|[Independent Component Alignment for Multi-Task Learning](https://arxiv.org/pdf/2305.19000)|
117
-
|[CAGrad](https://torchjd.org/stable/docs/aggregation/cagrad/)|[Conflict-Averse Gradient Descent for Multi-task Learning](https://arxiv.org/pdf/2110.14048)|
118
-
|[ConFIG](https://torchjd.org/stable/docs/aggregation/config/)|[ConFIG: Towards Conflict-free Training of Physics Informed Neural Networks](https://arxiv.org/pdf/2408.11104)|
|[DualProj](https://torchjd.org/stable/docs/aggregation/dualproj/)|[Gradient Episodic Memory for Continual Learning](https://arxiv.org/pdf/1706.08840)|
121
-
|[GradDrop](https://torchjd.org/stable/docs/aggregation/graddrop/)|[Just Pick a Sign: Optimizing Deep Multitask Models with Gradient Sign Dropout](https://arxiv.org/pdf/2010.06808)|
|[MGDA](https://torchjd.org/stable/docs/aggregation/mgda/)|[Multiple-gradient descent algorithm (MGDA) for multiobjective optimization](https://www.sciencedirect.com/science/article/pii/S1631073X12000738)|
126
-
|[Nash-MTL](https://torchjd.org/stable/docs/aggregation/nash_mtl/)|[Multi-Task Learning as a Bargaining Game](https://arxiv.org/pdf/2202.01017)|
127
-
|[PCGrad](https://torchjd.org/stable/docs/aggregation/pcgrad/)|[Gradient Surgery for Multi-Task Learning](https://arxiv.org/pdf/2001.06782)|
128
-
|[Random](https://torchjd.org/stable/docs/aggregation/random/)|[Reasonable Effectiveness of Random Weighting: A Litmus Test for Multi-Task Learning](https://arxiv.org/pdf/2111.10603)|
|[UPGrad](https://torchjd.org/stable/docs/aggregation/upgrad.html#torchjd.aggregation.UPGrad) (recommended) |[UPGradWeighting](https://torchjd.org/stable/docs/aggregation/upgrad#torchjd.aggregation.UPGradWeighting)|[Jacobian Descent For Multi-Objective Optimization](https://arxiv.org/pdf/2406.16232)|
167
+
|[AlignedMTL](https://torchjd.org/stable/docs/aggregation/aligned_mtl#torchjd.aggregation.AlignedMTL)|[AlignedMTLWeighting](https://torchjd.org/stable/docs/aggregation/aligned_mtl#torchjd.aggregation.AlignedMTLWeighting)|[Independent Component Alignment for Multi-Task Learning](https://arxiv.org/pdf/2305.19000)|
168
+
|[CAGrad](https://torchjd.org/stable/docs/aggregation/cagrad#torchjd.aggregation.CAGrad)|[CAGradWeighting](https://torchjd.org/stable/docs/aggregation/cagrad#torchjd.aggregation.CAGradWeighting)|[Conflict-Averse Gradient Descent for Multi-task Learning](https://arxiv.org/pdf/2110.14048)|
169
+
|[ConFIG](https://torchjd.org/stable/docs/aggregation/config#torchjd.aggregation.ConFIG)| - |[ConFIG: Towards Conflict-free Training of Physics Informed Neural Networks](https://arxiv.org/pdf/2408.11104)|
|[DualProj](https://torchjd.org/stable/docs/aggregation/dualproj#torchjd.aggregation.DualProj)|[DualProjWeighting](https://torchjd.org/stable/docs/aggregation/dualproj#torchjd.aggregation.DualProjWeighting)|[Gradient Episodic Memory for Continual Learning](https://arxiv.org/pdf/1706.08840)|
172
+
|[GradDrop](https://torchjd.org/stable/docs/aggregation/graddrop#torchjd.aggregation.GradDrop)| - |[Just Pick a Sign: Optimizing Deep Multitask Models with Gradient Sign Dropout](https://arxiv.org/pdf/2010.06808)|
|[MGDA](https://torchjd.org/stable/docs/aggregation/mgda#torchjd.aggregation.MGDA)|[MGDAWeighting](https://torchjd.org/stable/docs/aggregation/mgda#torchjd.aggregation.MGDAWeighting)|[Multiple-gradient descent algorithm (MGDA) for multiobjective optimization](https://www.sciencedirect.com/science/article/pii/S1631073X12000738)|
177
+
|[NashMTL](https://torchjd.org/stable/docs/aggregation/nash_mtl#torchjd.aggregation.NashMTL)| - |[Multi-Task Learning as a Bargaining Game](https://arxiv.org/pdf/2202.01017)|
178
+
|[PCGrad](https://torchjd.org/stable/docs/aggregation/pcgrad#torchjd.aggregation.PCGrad)|[PCGradWeighting](https://torchjd.org/stable/docs/aggregation/pcgrad#torchjd.aggregation.PCGradWeighting)|[Gradient Surgery for Multi-Task Learning](https://arxiv.org/pdf/2001.06782)|
179
+
|[Random](https://torchjd.org/stable/docs/aggregation/random#torchjd.aggregation.Random)|[RandomWeighting](https://torchjd.org/stable/docs/aggregation/random#torchjd.aggregation.RandomWeighting)|[Reasonable Effectiveness of Random Weighting: A Litmus Test for Multi-Task Learning](https://arxiv.org/pdf/2111.10603)|
0 commit comments