@@ -52,7 +52,7 @@ class ImperceptibleASRPyTorch(EvasionAttack):
5252 """
5353
5454 attack_params = EvasionAttack .attack_params + [
55- "initial_eps " ,
55+ "eps " ,
5656 "max_iter_1st_stage" ,
5757 "max_iter_2nd_stage" ,
5858 "learning_rate_1st_stage" ,
@@ -63,7 +63,7 @@ class ImperceptibleASRPyTorch(EvasionAttack):
6363 "initial_rescale" ,
6464 "rescale_factor" ,
6565 "num_iter_adjust_rescale" ,
66- "initial_alpha " ,
66+ "alpha " ,
6767 "increase_factor_alpha" ,
6868 "num_iter_increase_alpha" ,
6969 "decrease_factor_alpha" ,
@@ -85,7 +85,7 @@ class ImperceptibleASRPyTorch(EvasionAttack):
8585 def __init__ (
8686 self ,
8787 estimator : PyTorchDeepSpeech ,
88- initial_eps : float = 0.001 ,
88+ eps : float = 0.001 ,
8989 max_iter_1st_stage : int = 1000 ,
9090 max_iter_2nd_stage : int = 4000 ,
9191 learning_rate_1st_stage : float = 0.1 ,
@@ -96,7 +96,7 @@ def __init__(
9696 initial_rescale : float = 1.0 ,
9797 rescale_factor : float = 0.8 ,
9898 num_iter_adjust_rescale : int = 10 ,
99- initial_alpha : float = 0.05 ,
99+ alpha : float = 0.05 ,
100100 increase_factor_alpha : float = 1.2 ,
101101 num_iter_increase_alpha : int = 20 ,
102102 decrease_factor_alpha : float = 0.8 ,
@@ -109,7 +109,7 @@ def __init__(
109109 Create a :class:`.ImperceptibleASRPyTorch` instance.
110110
111111 :param estimator: A trained estimator.
112- :param initial_eps: Initial maximum perturbation that the attacker can introduce.
112+ :param eps: Maximum perturbation that the attacker can introduce.
113113 :param max_iter_1st_stage: The maximum number of iterations applied for the first stage of the optimization of
114114 the attack.
115115 :param max_iter_2nd_stage: The maximum number of iterations applied for the second stage of the optimization of
@@ -128,8 +128,7 @@ def __init__(
128128 :param rescale_factor: The factor to adjust the rescale coefficient during the first stage of the optimization
129129 of the attack.
130130 :param num_iter_adjust_rescale: Number of iterations to adjust the rescale coefficient.
131- :param initial_alpha: The initial value of the alpha coefficient used in the second stage of the optimization
132- of the attack.
131+ :param alpha: Value of the alpha coefficient used in the second stage of the optimization of the attack.
133132 :param increase_factor_alpha: The factor to increase the alpha coefficient used in the second stage of the
134133 optimization of the attack.
135134 :param num_iter_increase_alpha: Number of iterations to increase alpha.
@@ -150,7 +149,7 @@ def __init__(
150149
151150 # Set attack attributes
152151 self ._targeted = True
153- self .initial_eps = initial_eps
152+ self .eps = eps
154153 self .max_iter_1st_stage = max_iter_1st_stage
155154 self .max_iter_2nd_stage = max_iter_2nd_stage
156155 self .learning_rate_1st_stage = learning_rate_1st_stage
@@ -159,7 +158,7 @@ def __init__(
159158 self .initial_rescale = initial_rescale
160159 self .rescale_factor = rescale_factor
161160 self .num_iter_adjust_rescale = num_iter_adjust_rescale
162- self .initial_alpha = initial_alpha
161+ self .alpha = alpha
163162 self .increase_factor_alpha = increase_factor_alpha
164163 self .num_iter_increase_alpha = num_iter_increase_alpha
165164 self .decrease_factor_alpha = decrease_factor_alpha
@@ -407,8 +406,8 @@ class only supports targeted attack.
407406 # Adjust the rescale coefficient
408407 max_local_delta = np .max (np .abs (local_delta [local_batch_size_idx ].detach ().numpy ()))
409408
410- if rescale [local_batch_size_idx ][0 ] * self .initial_eps > max_local_delta :
411- rescale [local_batch_size_idx ] = max_local_delta / self .initial_eps
409+ if rescale [local_batch_size_idx ][0 ] * self .eps > max_local_delta :
410+ rescale [local_batch_size_idx ] = max_local_delta / self .eps
412411 rescale [local_batch_size_idx ] *= self .rescale_factor
413412
414413 # Save the best adversarial example
@@ -461,7 +460,7 @@ def _forward_1st_stage(
461460
462461 # Compute perturbed inputs
463462 local_delta = self .global_optimal_delta [:local_batch_size , :local_max_length ]
464- local_delta_rescale = torch .clamp (local_delta , - self .initial_eps , self .initial_eps ).to (self .estimator .device )
463+ local_delta_rescale = torch .clamp (local_delta , - self .eps , self .eps ).to (self .estimator .device )
465464 local_delta_rescale *= torch .tensor (rescale ).to (self .estimator .device )
466465 adv_input = local_delta_rescale + torch .tensor (original_input ).to (self .estimator .device )
467466 masked_adv_input = adv_input * torch .tensor (input_mask ).to (self .estimator .device )
@@ -523,7 +522,7 @@ class only supports targeted attack.
523522 local_max_length = np .max (real_lengths )
524523
525524 # Initialize alpha and rescale
526- alpha = np .array ([self .initial_alpha ] * local_batch_size , dtype = np .float64 )
525+ alpha = np .array ([self .alpha ] * local_batch_size , dtype = np .float64 )
527526 rescale = np .ones ([local_batch_size , local_max_length ], dtype = np .float64 ) * self .initial_rescale
528527
529528 # Reformat input
@@ -817,8 +816,8 @@ def _check_params(self) -> None:
817816 """
818817 Apply attack-specific checks.
819818 """
820- if self .initial_eps <= 0 :
821- raise ValueError ("The perturbation size `initial_eps ` has to be positive." )
819+ if self .eps <= 0 :
820+ raise ValueError ("The perturbation size `eps ` has to be positive." )
822821
823822 if not isinstance (self .max_iter_1st_stage , int ):
824823 raise ValueError ("The maximum number of iterations must be of type int." )
@@ -860,10 +859,10 @@ def _check_params(self) -> None:
860859 if not self .num_iter_adjust_rescale > 0 :
861860 raise ValueError ("The number of iterations must be greater than 0." )
862861
863- if not isinstance (self .initial_alpha , float ):
864- raise ValueError ("The initial alpha must be of type float." )
865- if not self .initial_alpha > 0.0 :
866- raise ValueError ("The initial alpha must be greater than 0.0." )
862+ if not isinstance (self .alpha , float ):
863+ raise ValueError ("The value of alpha must be of type float." )
864+ if not self .alpha > 0.0 :
865+ raise ValueError ("The value of alpha must be greater than 0.0." )
867866
868867 if not isinstance (self .increase_factor_alpha , float ):
869868 raise ValueError ("The factor to increase alpha must be of type float." )
0 commit comments