@@ -226,8 +226,11 @@ def _random_overlay(self, images: np.ndarray, patch: np.ndarray, scale: Optional
226226 )
227227
228228 image_mask = tf .pad (
229- image_mask , paddings = tf .constant ([[0 , 0 , ], [0 , 0 , ], [100 , 100 ], [0 , 0 ]]), mode = 'CONSTANT' ,
230- constant_values = 0 , name = None
229+ image_mask ,
230+ paddings = tf .constant ([[0 , 0 ,], [0 , 0 ,], [100 , 100 ], [0 , 0 ]]),
231+ mode = "CONSTANT" ,
232+ constant_values = 0 ,
233+ name = None ,
231234 )
232235
233236 image_mask = tf .cast (image_mask , images .dtype )
@@ -251,7 +254,11 @@ def _random_overlay(self, images: np.ndarray, patch: np.ndarray, scale: Optional
251254 pad_h_1 = self .image_shape [1 ] - smallest_image_edge - pad_h_0
252255
253256 padded_patch = tf .pad (
254- padded_patch , paddings = tf .constant ([[0 , 0 ], [pad_h_0 , pad_h_1 ], [pad_w_0 , pad_w_1 ], [0 , 0 ]]), mode = 'CONSTANT' , constant_values = 0 , name = None
257+ padded_patch ,
258+ paddings = tf .constant ([[0 , 0 ], [pad_h_0 , pad_h_1 ], [pad_w_0 , pad_w_1 ], [0 , 0 ]]),
259+ mode = "CONSTANT" ,
260+ constant_values = 0 ,
261+ name = None ,
255262 )
256263
257264 padded_patch = tf .cast (padded_patch , images .dtype )
@@ -296,7 +303,9 @@ def _random_overlay(self, images: np.ndarray, patch: np.ndarray, scale: Optional
296303 transform_vectors .append (np .array ([a0 , a1 , a2 , b0 , b1 , b2 , 0 , 0 ]).astype (np .float32 ))
297304
298305 image_mask = tfa .image .transform (image_mask , transform_vectors , "BILINEAR" , output_shape = self .image_shape [:2 ])
299- padded_patch = tfa .image .transform (padded_patch , transform_vectors , "BILINEAR" , output_shape = self .image_shape [:2 ])
306+ padded_patch = tfa .image .transform (
307+ padded_patch , transform_vectors , "BILINEAR" , output_shape = self .image_shape [:2 ]
308+ )
300309 inverted_mask = 1 - image_mask
301310
302311 return images * inverted_mask + padded_patch * image_mask
0 commit comments