Skip to content

Commit 12d77c6

Browse files
Irina NicolaeIrina Nicolae
authored andcommitted
Merge branch 'dev' of github.ibm.com:Maria-Irina-Nicolae/nemesis into dev
2 parents d13fee2 + 0c7bf71 commit 12d77c6

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

art/metrics.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,7 @@ def clever_u(classifier, x, n_b, n_s, r, norm, c_init=1, pool_factor=10):
153153
:rtype: `float`
154154
"""
155155
# Get a list of untargeted classes
156-
y_pred = classifier.predict(np.array([x]), logits=False)
156+
y_pred = classifier.predict(np.array([x]), logits=True)
157157
pred_class = np.argmax(y_pred, axis=1)[0]
158158
untarget_classes = [i for i in range(classifier.nb_classes) if i != pred_class]
159159

@@ -192,7 +192,7 @@ def clever_t(classifier, x, target_class, n_b, n_s, r, norm, c_init=1, pool_fact
192192
:rtype: `float`
193193
"""
194194
# Check if the targeted class is different from the predicted class
195-
y_pred = classifier.predict(np.array([x]), logits=False)
195+
y_pred = classifier.predict(np.array([x]), logits=True)
196196
pred_class = np.argmax(y_pred, axis=1)[0]
197197
if target_class == pred_class:
198198
raise ValueError("The targeted class is the predicted class")
@@ -226,7 +226,7 @@ def clever_t(classifier, x, target_class, n_b, n_s, r, norm, c_init=1, pool_fact
226226
sample_xs = rand_pool[np.random.choice(pool_factor * n_s, n_s)]
227227

228228
# Compute gradients
229-
grads = classifier.class_gradient(sample_xs, logits=False)
229+
grads = classifier.class_gradient(sample_xs, logits=True)
230230
if np.isnan(grads).any():
231231
raise Exception("The classifier results NaN gradients")
232232

@@ -239,7 +239,7 @@ def clever_t(classifier, x, target_class, n_b, n_s, r, norm, c_init=1, pool_fact
239239
[_, loc, _] = weibull_min.fit(-np.array(grad_norm_set), c_init, optimizer=scipy_optimizer)
240240

241241
# Compute function value
242-
values = classifier.predict(np.array([x]), logits=False)
242+
values = classifier.predict(np.array([x]), logits=True)
243243
value = values[:, pred_class] - values[:, target_class]
244244

245245
# Compute scores

0 commit comments

Comments
 (0)