@@ -153,7 +153,7 @@ def clever_u(classifier, x, n_b, n_s, r, norm, c_init=1, pool_factor=10):
153153 :rtype: `float`
154154 """
155155 # Get a list of untargeted classes
156- y_pred = classifier .predict (np .array ([x ]), logits = False )
156+ y_pred = classifier .predict (np .array ([x ]), logits = True )
157157 pred_class = np .argmax (y_pred , axis = 1 )[0 ]
158158 untarget_classes = [i for i in range (classifier .nb_classes ) if i != pred_class ]
159159
@@ -192,7 +192,7 @@ def clever_t(classifier, x, target_class, n_b, n_s, r, norm, c_init=1, pool_fact
192192 :rtype: `float`
193193 """
194194 # Check if the targeted class is different from the predicted class
195- y_pred = classifier .predict (np .array ([x ]), logits = False )
195+ y_pred = classifier .predict (np .array ([x ]), logits = True )
196196 pred_class = np .argmax (y_pred , axis = 1 )[0 ]
197197 if target_class == pred_class :
198198 raise ValueError ("The targeted class is the predicted class" )
@@ -226,7 +226,7 @@ def clever_t(classifier, x, target_class, n_b, n_s, r, norm, c_init=1, pool_fact
226226 sample_xs = rand_pool [np .random .choice (pool_factor * n_s , n_s )]
227227
228228 # Compute gradients
229- grads = classifier .class_gradient (sample_xs , logits = False )
229+ grads = classifier .class_gradient (sample_xs , logits = True )
230230 if np .isnan (grads ).any ():
231231 raise Exception ("The classifier results NaN gradients" )
232232
@@ -239,7 +239,7 @@ def clever_t(classifier, x, target_class, n_b, n_s, r, norm, c_init=1, pool_fact
239239 [_ , loc , _ ] = weibull_min .fit (- np .array (grad_norm_set ), c_init , optimizer = scipy_optimizer )
240240
241241 # Compute function value
242- values = classifier .predict (np .array ([x ]), logits = False )
242+ values = classifier .predict (np .array ([x ]), logits = True )
243243 value = values [:, pred_class ] - values [:, target_class ]
244244
245245 # Compute scores
0 commit comments