@@ -46,7 +46,7 @@ def test_tfclassifier(self):
4646 self ._sess .run (tf .global_variables_initializer ())
4747
4848 # Get MNIST
49- batch_size , nb_train , nb_test = 100 , 1000 , 10
49+ batch_size , nb_train , nb_test = 100 , 500 , 5
5050 (x_train , y_train ), (x_test , y_test ), _ , _ = load_mnist ()
5151 x_train , y_train = x_train [:nb_train ], y_train [:nb_train ]
5252 x_test , y_test = x_test [:nb_test ], y_test [:nb_test ]
@@ -57,7 +57,7 @@ def test_tfclassifier(self):
5757 tfc .fit (x_train , y_train , batch_size = batch_size , nb_epochs = 2 )
5858
5959 # First attack
60- cl2m = CarliniL2Method (classifier = tfc , targeted = True , max_iter = 100 , binary_search_steps = 10 ,
60+ cl2m = CarliniL2Method (classifier = tfc , targeted = True , max_iter = 10 , binary_search_steps = 10 ,
6161 learning_rate = 2e-2 , initial_const = 3 , decay = 1e-2 )
6262 params = {'y' : random_targets (y_test , tfc .nb_classes )}
6363 x_test_adv = cl2m .generate (x_test , ** params )
@@ -67,7 +67,7 @@ def test_tfclassifier(self):
6767 self .assertTrue ((target == y_pred_adv ).all ())
6868
6969 # Second attack
70- cl2m = CarliniL2Method (classifier = tfc , targeted = False , max_iter = 100 , binary_search_steps = 10 ,
70+ cl2m = CarliniL2Method (classifier = tfc , targeted = False , max_iter = 10 , binary_search_steps = 10 ,
7171 learning_rate = 2e-2 , initial_const = 3 , decay = 1e-2 )
7272 params = {'y' : random_targets (y_test , tfc .nb_classes )}
7373 x_test_adv = cl2m .generate (x_test , ** params )
@@ -77,7 +77,7 @@ def test_tfclassifier(self):
7777 self .assertTrue ((target != y_pred_adv ).all ())
7878
7979 # Third attack
80- cl2m = CarliniL2Method (classifier = tfc , targeted = False , max_iter = 100 , binary_search_steps = 10 ,
80+ cl2m = CarliniL2Method (classifier = tfc , targeted = False , max_iter = 10 , binary_search_steps = 10 ,
8181 learning_rate = 2e-2 , initial_const = 3 , decay = 1e-2 )
8282 params = {}
8383 x_test_adv = cl2m .generate (x_test , ** params )
@@ -96,7 +96,7 @@ def test_krclassifier(self):
9696 k .set_session (session )
9797
9898 # Get MNIST
99- batch_size , nb_train , nb_test = 100 , 1000 , 10
99+ batch_size , nb_train , nb_test = 100 , 500 , 5
100100 (x_train , y_train ), (x_test , y_test ), _ , _ = load_mnist ()
101101 x_train , y_train = x_train [:nb_train ], y_train [:nb_train ]
102102 x_test , y_test = x_test [:nb_test ], y_test [:nb_test ]
@@ -116,7 +116,7 @@ def test_krclassifier(self):
116116 krc .fit (x_train , y_train , batch_size = batch_size , nb_epochs = 2 )
117117
118118 # First attack
119- cl2m = CarliniL2Method (classifier = krc , targeted = True , max_iter = 100 , binary_search_steps = 10 ,
119+ cl2m = CarliniL2Method (classifier = krc , targeted = True , max_iter = 10 , binary_search_steps = 10 ,
120120 learning_rate = 2e-2 , initial_const = 3 , decay = 1e-2 )
121121 params = {'y' : random_targets (y_test , krc .nb_classes )}
122122 x_test_adv = cl2m .generate (x_test , ** params )
@@ -126,7 +126,7 @@ def test_krclassifier(self):
126126 self .assertTrue ((target == y_pred_adv ).any ())
127127
128128 # Second attack
129- cl2m = CarliniL2Method (classifier = krc , targeted = False , max_iter = 100 , binary_search_steps = 10 ,
129+ cl2m = CarliniL2Method (classifier = krc , targeted = False , max_iter = 10 , binary_search_steps = 10 ,
130130 learning_rate = 2e-2 , initial_const = 3 , decay = 1e-2 )
131131 params = {'y' : random_targets (y_test , krc .nb_classes )}
132132 x_test_adv = cl2m .generate (x_test , ** params )
@@ -136,7 +136,7 @@ def test_krclassifier(self):
136136 self .assertTrue ((target != y_pred_adv ).all ())
137137
138138 # Third attack
139- cl2m = CarliniL2Method (classifier = krc , targeted = False , max_iter = 100 , binary_search_steps = 10 ,
139+ cl2m = CarliniL2Method (classifier = krc , targeted = False , max_iter = 10 , binary_search_steps = 10 ,
140140 learning_rate = 2e-2 , initial_const = 3 , decay = 1e-2 )
141141 params = {}
142142 x_test_adv = cl2m .generate (x_test , ** params )
0 commit comments