|
| 1 | +# MIT License |
| 2 | +# |
| 3 | +# Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2022 |
| 4 | +# |
| 5 | +# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated |
| 6 | +# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the |
| 7 | +# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit |
| 8 | +# persons to whom the Software is furnished to do so, subject to the following conditions: |
| 9 | +# |
| 10 | +# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the |
| 11 | +# Software. |
| 12 | +# |
| 13 | +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE |
| 14 | +# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 15 | +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
| 16 | +# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 17 | +# SOFTWARE. |
| 18 | +""" |
| 19 | +This module implements a Hidden Trigger Backdoor attack on Neural Networks. |
| 20 | +
|
| 21 | +| Paper link: https://arxiv.org/abs/1910.00033 |
| 22 | +""" |
| 23 | +from __future__ import absolute_import, division, print_function, unicode_literals |
| 24 | + |
| 25 | +import logging |
| 26 | +from typing import List, Optional, Tuple, Union, TYPE_CHECKING |
| 27 | + |
| 28 | +import numpy as np |
| 29 | + |
| 30 | +from art.attacks.attack import PoisoningAttackWhiteBox |
| 31 | +from art.attacks.poisoning.backdoor_attack import PoisoningAttackBackdoor |
| 32 | +from art.estimators import BaseEstimator, NeuralNetworkMixin |
| 33 | +from art.estimators.classification.classifier import ClassifierMixin |
| 34 | +from art.estimators.classification.pytorch import PyTorchClassifier |
| 35 | +from art.estimators.classification.keras import KerasClassifier |
| 36 | +from art.estimators.classification.tensorflow import TensorFlowV2Classifier |
| 37 | + |
| 38 | +from art.attacks.poisoning.hidden_trigger_backdoor.hidden_trigger_backdoor_pytorch import ( |
| 39 | + HiddenTriggerBackdoorPyTorch, |
| 40 | +) |
| 41 | +from art.attacks.poisoning.hidden_trigger_backdoor.hidden_trigger_backdoor_keras import ( |
| 42 | + HiddenTriggerBackdoorKeras, |
| 43 | +) |
| 44 | + |
| 45 | +if TYPE_CHECKING: |
| 46 | + from art.utils import CLASSIFIER_NEURALNETWORK_TYPE |
| 47 | + |
| 48 | +logger = logging.getLogger(__name__) |
| 49 | + |
| 50 | + |
| 51 | +class HiddenTriggerBackdoor(PoisoningAttackWhiteBox): |
| 52 | + """ |
| 53 | + Implementation of Hidden Trigger Backdoor Attack by Saha et al 2019. |
| 54 | + "Hidden Trigger Backdoor Attacks |
| 55 | +
|
| 56 | + | Paper link: https://arxiv.org/abs/1910.00033 |
| 57 | + """ |
| 58 | + |
| 59 | + attack_params = PoisoningAttackWhiteBox.attack_params + [ |
| 60 | + "target", |
| 61 | + "backdoor", |
| 62 | + "feature_layer", |
| 63 | + "source", |
| 64 | + "eps", |
| 65 | + "learning_rate", |
| 66 | + "decay_coeff", |
| 67 | + "decay_iter", |
| 68 | + "stopping_tol", |
| 69 | + "max_iter", |
| 70 | + "poison_percent", |
| 71 | + "batch_size", |
| 72 | + "verbose", |
| 73 | + "print_iter", |
| 74 | + ] |
| 75 | + |
| 76 | + _estimator_requirements = (BaseEstimator, NeuralNetworkMixin, ClassifierMixin) |
| 77 | + |
| 78 | + def __init__( |
| 79 | + self, |
| 80 | + classifier: "CLASSIFIER_NEURALNETWORK_TYPE", |
| 81 | + target: np.ndarray, |
| 82 | + source: np.ndarray, |
| 83 | + feature_layer: Union[str, int], |
| 84 | + backdoor: PoisoningAttackBackdoor, |
| 85 | + eps: float = 0.1, |
| 86 | + learning_rate: float = 0.001, |
| 87 | + decay_coeff: float = 0.95, |
| 88 | + decay_iter: Union[int, List[int]] = 2000, |
| 89 | + stopping_threshold: float = 10, |
| 90 | + max_iter: int = 5000, |
| 91 | + batch_size: float = 100, |
| 92 | + poison_percent: float = 0.1, |
| 93 | + is_index: bool = False, |
| 94 | + verbose: bool = True, |
| 95 | + print_iter: int = 100, |
| 96 | + ) -> None: |
| 97 | + """ |
| 98 | + Creates a new Hidden Trigger Backdoor poisoning attack. |
| 99 | +
|
| 100 | + :param classifier: A trained neural network classifier. |
| 101 | + :param target: The target class/indices to poison. Triggers added to inputs not in the target class will |
| 102 | + result in misclassifications to the target class. If an int, it represents a label. |
| 103 | + Otherwise, it is an array of indicies. |
| 104 | + :param source: The class/indicies which will have a trigger added to cause misclassification |
| 105 | + If an int, it represents a label. Otherwise, it is an array of indicies. |
| 106 | + :param feature_layer: The name of the feature representation layer |
| 107 | + :param backdoor: A PoisoningAttackBackdoor that adds a backdoor trigger to the input. |
| 108 | + :param eps: Maximum perturbation that the attacker can introduce. |
| 109 | + :param learning_rate: The learning rate of clean-label attack optimization. |
| 110 | + :param decay_coeff: The decay coefficient of the learning rate. |
| 111 | + :param decay_iter: The number of iterations before the learning rate decays |
| 112 | + :param stopping_threshold: Stop iterations after loss is less than this threshold. |
| 113 | + :param max_iter: The maximum number of iterations for the attack. |
| 114 | + :param batch_size: The number of samples to draw per batch. |
| 115 | + :param poison_percent: The percentage of the data to poison. This is ignored if indices are provided |
| 116 | + :param is_index: If true, the source and target params are assumed to represent indices rather |
| 117 | + than a class label. poison_percent is ignored if true. |
| 118 | + :param verbose: Show progress bars. |
| 119 | + :param print_iter: The number of iterations to print the current loss progress. |
| 120 | + """ |
| 121 | + super().__init__(classifier=classifier) # type: ignore |
| 122 | + self.target = target |
| 123 | + self.source = source |
| 124 | + self.feature_layer = feature_layer |
| 125 | + self.backdoor = backdoor |
| 126 | + self.eps = eps |
| 127 | + self.learning_rate = learning_rate |
| 128 | + self.decay_coeff = decay_coeff |
| 129 | + self.decay_iter = decay_iter |
| 130 | + self.stopping_threshold = stopping_threshold |
| 131 | + self.max_iter = max_iter |
| 132 | + self.batch_size = batch_size |
| 133 | + self.poison_percent = poison_percent |
| 134 | + self.is_index = is_index |
| 135 | + self.verbose = verbose |
| 136 | + self.print_iter = print_iter |
| 137 | + self._check_params() |
| 138 | + |
| 139 | + if isinstance(self.estimator, PyTorchClassifier): |
| 140 | + self._attack = HiddenTriggerBackdoorPyTorch( |
| 141 | + classifier=classifier, # type: ignore |
| 142 | + target=target, |
| 143 | + source=source, |
| 144 | + backdoor=backdoor, |
| 145 | + feature_layer=feature_layer, |
| 146 | + eps=eps, |
| 147 | + learning_rate=learning_rate, |
| 148 | + decay_coeff=decay_coeff, |
| 149 | + decay_iter=decay_iter, |
| 150 | + stopping_threshold=stopping_threshold, |
| 151 | + max_iter=max_iter, |
| 152 | + batch_size=batch_size, |
| 153 | + poison_percent=poison_percent, |
| 154 | + is_index=is_index, |
| 155 | + verbose=verbose, |
| 156 | + print_iter=print_iter, |
| 157 | + ) |
| 158 | + |
| 159 | + elif isinstance(self.estimator, (KerasClassifier, TensorFlowV2Classifier)): |
| 160 | + self._attack = HiddenTriggerBackdoorKeras( # type: ignore |
| 161 | + classifier=classifier, # type: ignore |
| 162 | + target=target, |
| 163 | + source=source, |
| 164 | + backdoor=backdoor, |
| 165 | + feature_layer=feature_layer, |
| 166 | + eps=eps, |
| 167 | + learning_rate=learning_rate, |
| 168 | + decay_coeff=decay_coeff, |
| 169 | + decay_iter=decay_iter, |
| 170 | + stopping_threshold=stopping_threshold, |
| 171 | + max_iter=max_iter, |
| 172 | + batch_size=batch_size, |
| 173 | + poison_percent=poison_percent, |
| 174 | + is_index=is_index, |
| 175 | + verbose=verbose, |
| 176 | + print_iter=print_iter, |
| 177 | + ) |
| 178 | + |
| 179 | + else: |
| 180 | + raise ValueError("Only Pytorch, Keras, and TensorFlowV2 classifiers are supported") |
| 181 | + |
| 182 | + def poison( # pylint: disable=W0221 |
| 183 | + self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs |
| 184 | + ) -> Tuple[np.ndarray, np.ndarray]: |
| 185 | + """ |
| 186 | + Calls perturbation function on the dataset x and returns only the perturbed inputs and their |
| 187 | + indices in the dataset. |
| 188 | + :param x: An array in the shape NxCxWxH with the points to draw source and target samples from. |
| 189 | + Source indicates the class(es) that the backdoor would be added to to cause |
| 190 | + misclassification into the target label. |
| 191 | + Target indicates the class that the backdoor should cause misclassification into. |
| 192 | + :param y: The labels of the provided samples. If none, we will use the classifier to label the |
| 193 | + data. |
| 194 | + :return: An tuple holding the `(poisoning_examples, poisoning_labels)`. |
| 195 | + """ |
| 196 | + |
| 197 | + return self._attack.poison(x, y, **kwargs) |
| 198 | + |
| 199 | + def _check_params(self) -> None: |
| 200 | + |
| 201 | + if not isinstance(self.target, np.ndarray) or not isinstance(self.source, np.ndarray): |
| 202 | + raise ValueError("Target and source must be arrays") |
| 203 | + |
| 204 | + if np.array_equal(self.target, self.source): |
| 205 | + raise ValueError("Target and source values can't be the same") |
| 206 | + |
| 207 | + if self.learning_rate <= 0: |
| 208 | + raise ValueError("Learning rate must be strictly positive") |
| 209 | + |
| 210 | + if not isinstance(self.backdoor, PoisoningAttackBackdoor): |
| 211 | + raise TypeError("Backdoor must be of type PoisoningAttackBackdoor") |
| 212 | + |
| 213 | + if self.eps < 0: |
| 214 | + raise ValueError("The perturbation size `eps` has to be non-negative.") |
| 215 | + |
| 216 | + if not isinstance(self.feature_layer, (str, int)): |
| 217 | + raise TypeError("Feature layer should be a string or int") |
| 218 | + |
| 219 | + if isinstance(self.feature_layer, int): |
| 220 | + if not 0 <= self.feature_layer < len(self.estimator.layer_names): |
| 221 | + raise ValueError("feature_layer is not a non-negative integer") |
| 222 | + |
| 223 | + if self.decay_coeff <= 0: |
| 224 | + raise ValueError("Decay coefficient must be positive") |
| 225 | + |
| 226 | + if not 0 < self.poison_percent <= 1: |
| 227 | + raise ValueError("poison_percent must be between 0 (exclusive) and 1 (inclusive)") |
| 228 | + |
| 229 | + if not isinstance(self.verbose, bool): |
| 230 | + raise ValueError("The argument `verbose` has to be of type bool.") |
0 commit comments