1- # Adversarial Robustness 360 Toolbox (ART) v1.1
1+ # Adversarial Robustness Toolbox (ART) v1.1
22<p align =" center " >
33 <img src =" docs/images/art_logo.png?raw=true " width =" 200 " title =" ART logo " >
44</p >
55<br />
66
7- [ ![ Build Status] ( https://travis-ci.org/IBM/adversarial-robustness-toolbox.svg?branch=master )] ( https://travis-ci.org/IBM/adversarial-robustness-toolbox ) [ ![ Documentation Status] ( https://readthedocs.org/projects/adversarial-robustness-toolbox/badge/?version=latest )] ( http://adversarial-robustness-toolbox.readthedocs.io/en/latest/?badge=latest ) [ ![ GitHub version] ( https://badge.fury.io/gh/IBM%2Fadversarial-robustness-toolbox.svg )] ( https://badge.fury.io/gh/IBM%2Fadversarial-robustness-toolbox ) [ ![ Language grade: Python] ( https://img.shields.io/lgtm/grade/python/g/IBM/adversarial-robustness-toolbox.svg?logo=lgtm&logoWidth=18 )] ( https://lgtm.com/projects/g/IBM/adversarial-robustness-toolbox/context:python ) [ ![ Total alerts] ( https://img.shields.io/lgtm/alerts/g/IBM/adversarial-robustness-toolbox.svg?logo=lgtm&logoWidth=18 )] ( https://lgtm.com/projects/g/IBM/adversarial-robustness-toolbox/alerts/ )
7+ [ ![ Build Status] ( https://travis-ci.org/IBM/adversarial-robustness-toolbox.svg?branch=master )] ( https://travis-ci.org/IBM/adversarial-robustness-toolbox )
8+ [ ![ Documentation Status] ( https://readthedocs.org/projects/adversarial-robustness-toolbox/badge/?version=latest )] ( http://adversarial-robustness-toolbox.readthedocs.io/en/latest/?badge=latest )
9+ [ ![ GitHub version] ( https://badge.fury.io/gh/IBM%2Fadversarial-robustness-toolbox.svg )] ( https://badge.fury.io/gh/IBM%2Fadversarial-robustness-toolbox )
10+ [ ![ Language grade: Python] ( https://img.shields.io/lgtm/grade/python/g/IBM/adversarial-robustness-toolbox.svg?logo=lgtm&logoWidth=18 )] ( https://lgtm.com/projects/g/IBM/adversarial-robustness-toolbox/context:python )
11+ [ ![ Total alerts] ( https://img.shields.io/lgtm/alerts/g/IBM/adversarial-robustness-toolbox.svg?logo=lgtm&logoWidth=18 )] ( https://lgtm.com/projects/g/IBM/adversarial-robustness-toolbox/alerts/ )
12+ [ ![ codecov] ( https://codecov.io/gh/IBM/adversarial-robustness-toolbox/branch/master/graph/badge.svg )] ( https://codecov.io/gh/IBM/adversarial-robustness-toolbox )
13+ [ ![ Code style: black] ( https://img.shields.io/badge/code%20style-black-000000.svg )] ( https://github.com/psf/black )
14+ [ ![ License: MIT] ( https://img.shields.io/badge/License-MIT-yellow.svg )] ( https://opensource.org/licenses/MIT )
15+ [ ![ PyPI - Python Version] ( https://img.shields.io/pypi/pyversions/adversarial-robustness-toolbox )] ( https://pypi.org/project/adversarial-robustness-toolbox/ )
16+ [ ![ slack-img] ( https://img.shields.io/badge/chat-on%20slack-yellow.svg )] ( https://ibm-art.slack.com/ )
817
918[ 中文README请按此处] ( README-cn.md )
1019
11- Adversarial Robustness 360 Toolbox (ART) is a Python library supporting developers and researchers in defending Machine
20+ Adversarial Robustness Toolbox (ART) is a Python library supporting developers and researchers in defending Machine
1221Learning models (Deep Neural Networks, Gradient Boosted Decision Trees, Support Vector Machines, Random Forests,
1322Logistic Regression, Gaussian Processes, Decision Trees, Scikit-learn Pipelines, etc.) against adversarial threats
1423(including evasion, extraction and poisoning) and helps making AI systems more secure and trustworthy. Machine Learning
@@ -42,6 +51,8 @@ Get in touch with us on [Slack](https://ibm-art.slack.com) (invite [here](https:
4251## Implemented Attacks, Defences, Detections, Metrics, Certifications and Verifications
4352
4453** Evasion Attacks:**
54+ * Threshold Attack ([ Vargas et al., 2019] ( https://arxiv.org/abs/1906.06026 ) )
55+ * Pixel Attack ([ Vargas et al., 2019] ( https://arxiv.org/abs/1906.06026 ) , [ Su et al., 2019] ( https://ieeexplore.ieee.org/abstract/document/8601309/citations#citations ) )
4556* HopSkipJump attack ([ Chen et al., 2019] ( https://arxiv.org/abs/1904.02144 ) )
4657* High Confidence Low Uncertainty adversarial samples ([ Grosse et al., 2018] ( https://arxiv.org/abs/1812.02606 ) )
4758* Projected gradient descent ([ Madry et al., 2017] ( https://arxiv.org/abs/1706.06083 ) )
@@ -64,11 +75,13 @@ Get in touch with us on [Slack](https://ibm-art.slack.com) (invite [here](https:
6475** Extraction Attacks:**
6576* Functionally Equivalent Extraction ([ Jagielski et al., 2019] ( https://arxiv.org/abs/1909.01838 ) )
6677* Copycat CNN ([ Correia-Silva et al., 2018] ( https://arxiv.org/abs/1806.05476 ) )
78+ * KnockoffNets ([ Orekondy et al., 2018] ( https://arxiv.org/abs/1812.02766 ) )
6779
6880** Poisoning Attacks:**
6981* Poisoning Attack on SVM ([ Biggio et al., 2013] ( https://arxiv.org/abs/1206.6389 ) )
82+ * Backdoor Attack ([ Gu, et. al., 2017] ( https://arxiv.org/abs/1708.06733 ) )
7083
71- ** Defences:**
84+ ** Defences - Preprocessor :**
7285* Thermometer encoding ([ Buckman et al., 2018] ( https://openreview.net/forum?id=S18Su--CW ) )
7386* Total variance minimization ([ Guo et al., 2018] ( https://openreview.net/forum?id=SyJ7ClWCb ) )
7487* PixelDefend ([ Song et al., 2017] ( https://arxiv.org/abs/1710.10766 ) )
@@ -78,15 +91,21 @@ Get in touch with us on [Slack](https://ibm-art.slack.com) (invite [here](https:
7891* JPEG compression ([ Dziugaite et al., 2016] ( https://arxiv.org/abs/1608.00853 ) )
7992* Label smoothing ([ Warde-Farley and Goodfellow, 2016] ( https://pdfs.semanticscholar.org/b5ec/486044c6218dd41b17d8bba502b32a12b91a.pdf ) )
8093* Virtual adversarial training ([ Miyato et al., 2015] ( https://arxiv.org/abs/1507.00677 ) )
81- * Adversarial training ([ Szegedy et al., 2013] ( http://arxiv.org/abs/1312.6199 ) )
8294
83- ** Extraction Defences:**
95+ ** Defences - Postprocessor :**
8496* Reverse Sigmoid ([ Lee et al., 2018] ( https://arxiv.org/abs/1806.00054 ) )
8597* Random Noise ([ Chandrasekaranet al., 2018] ( https://arxiv.org/abs/1811.02054 ) )
8698* Class Labels ([ Tramer et al., 2016] ( https://arxiv.org/abs/1609.02943 ) , [ Chandrasekaranet al., 2018] ( https://arxiv.org/abs/1811.02054 ) )
8799* High Confidence ([ Tramer et al., 2016] ( https://arxiv.org/abs/1609.02943 ) )
88100* Rounding ([ Tramer et al., 2016] ( https://arxiv.org/abs/1609.02943 ) )
89101
102+ ** Defences - Trainer:**
103+ * Adversarial training ([ Szegedy et al., 2013] ( http://arxiv.org/abs/1312.6199 ) )
104+ * Adversarial training Madry PGD ([ Madry et al., 2017] ( https://arxiv.org/abs/1706.06083 ) )
105+
106+ ** Defences - Transformer:**
107+ * Defensive Distillation ([ Papernot et al., 2015] ( https://arxiv.org/abs/1511.04508 ) )
108+
90109** Robustness Metrics, Certifications and Verifications** :
91110* Clique Method Robustness Verification ([ Hongge et al., 2019] ( https://arxiv.org/abs/1906.03849 ) )
92111* Randomized Smoothing ([ Cohen et al., 2019] ( https://arxiv.org/abs/1902.02918 ) )
@@ -122,7 +141,7 @@ The most recent version of ART can be downloaded or cloned from this repository:
122141git clone https://github.com/IBM/adversarial-robustness-toolbox
123142```
124143
125- Install ART with the following command from the project folder ` art ` :
144+ Install ART with the following command from the project folder ` adversarial-robustness-toolbox ` :
126145``` bash
127146pip install .
128147```
@@ -149,10 +168,10 @@ and overview and more information.
149168
150169Adding new features, improving documentation, fixing bugs, or writing tutorials are all examples of helpful
151170contributions. Furthermore, if you are publishing a new attack or defense, we strongly encourage you to add it to the
152- Adversarial Robustness 360 Toolbox so that others may evaluate it fairly in their own work.
171+ Adversarial Robustness Toolbox so that others may evaluate it fairly in their own work.
153172
154173Bug fixes can be initiated through GitHub pull requests. When making code contributions to the Adversarial Robustness
155- 360 Toolbox, we ask that you follow the ` PEP 8 ` coding standard and that you provide unit tests for the new features.
174+ Toolbox, we ask that you follow the ` PEP 8 ` coding standard and that you provide unit tests for the new features.
156175
157176This project uses [ DCO] ( https://developercertificate.org/ ) . Be sure to sign off your commits using the ` -s ` flag or
158177adding ` Signed-off-By: Name<Email> ` in the commit message.
0 commit comments